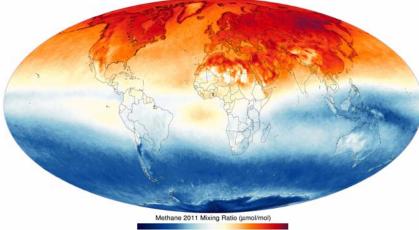
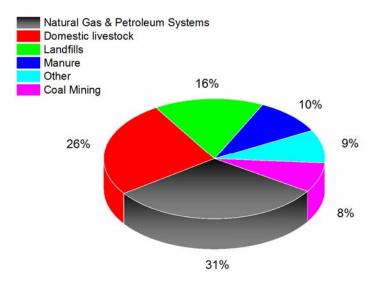
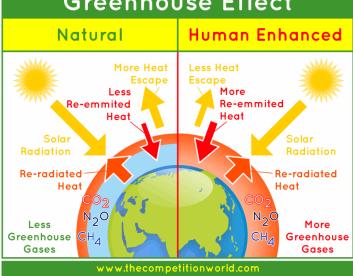
ADVANCED BROADBAND DIAL SOUNDER OF METHANE

V. Pencheva, S. Penchev* and T. Dreischuh

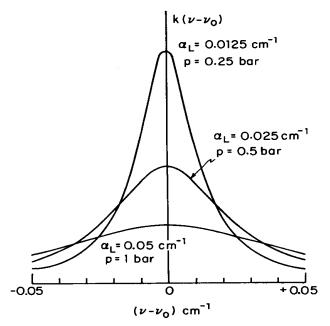

Laboratory of Laser Radars, Emil Djakov Institute of Electronics, Bulgarian Academy of Sciences 72 Blvd Tzarigradsko Chaussee, 1784 Sofia, Bulgaria


BPU 11 Aug 28 – Sep 01 2022, Belgrade, Serbia (online poster)



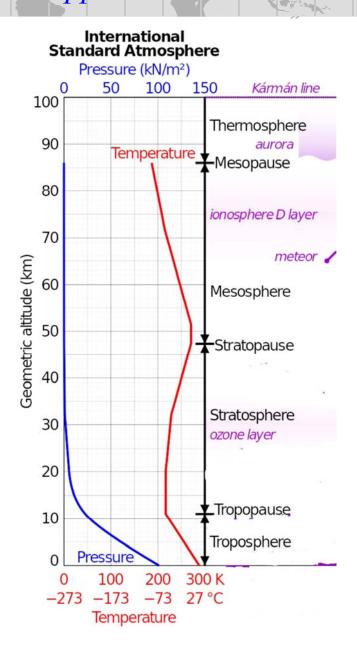
Why methane?

1.73 1.75 1.77 1.79 1.81 1.83 1.85 1.71


Greenhouse Effect

Infrared Atmospheric Sounding Interfero, eter (IASI)

Geophysical variables	Vertical resolution	Horizontal resolution
Humidity profile	1-2 Km (low Troposphere)	25 Km (cloud free)
CO, CH ₄ , N ₂ O	Integrated content	100 Km


A lidar sounder is advantageous for retrieval of range- resolved data of the atmospheric gas GMR. The conventional DIAL signal on dual wavelengths on/off an absorption line is replaced by the ratio of confined, integral absorption bands. The result depends on the absorption linestrength instead of the line amplitude subjected to pressure- broadening

Barometric formula approximation

$$P = P_{\rm b} \exp\left[\frac{-g_0 M \left(h - h_{\rm b}\right)}{R^* T_{\rm b}}\right]$$

 P_b reference pressure [Pa] T_b reference temperature [K]h height [m] h_b reference height [m] R^* universal gas constant 8.3 [J.mol⁻¹K⁻¹] g_0 gravitational constant 9.8 [m.s⁻²]M molar mass of air 0.029 [kg.mol₋₁]

Broadband CH4 DIAL on powerful LD

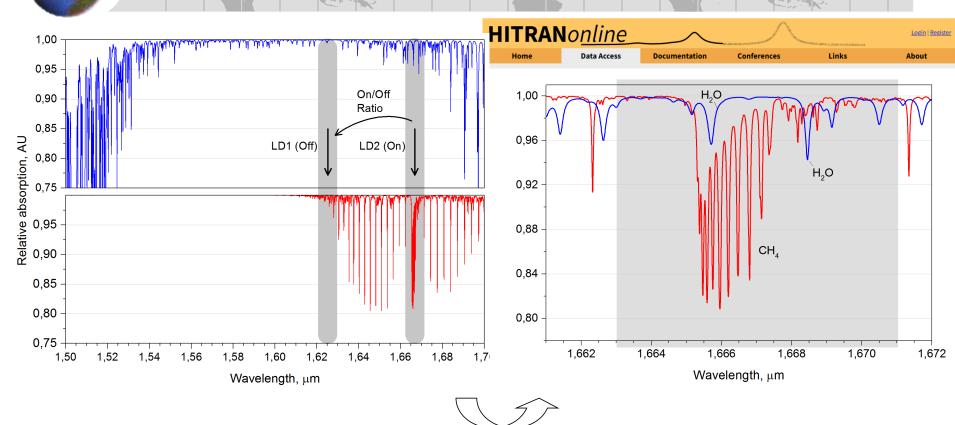


Fig.1 Differential absorption bands (vertical bars) of 8nm linewidth centered at $1.625\mu m$ and $1.667\mu m$ wavelengths matching CH₄ (red) and H₂O (blue) spectra Fig.2 Scaled - up spectrum confined around 1.667µm wavelength

 Penchev S. et.al. (2012). Comptes rendus de l'Académie bulgare des Sciences, 65, 669-674.
 Thomas B. et.al. (2013), Applied Physics B, 113, 265–75.

Multiplexation of DIAL signal

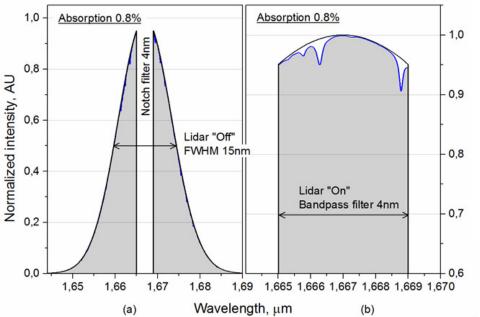
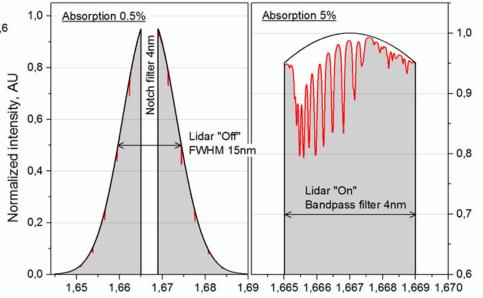



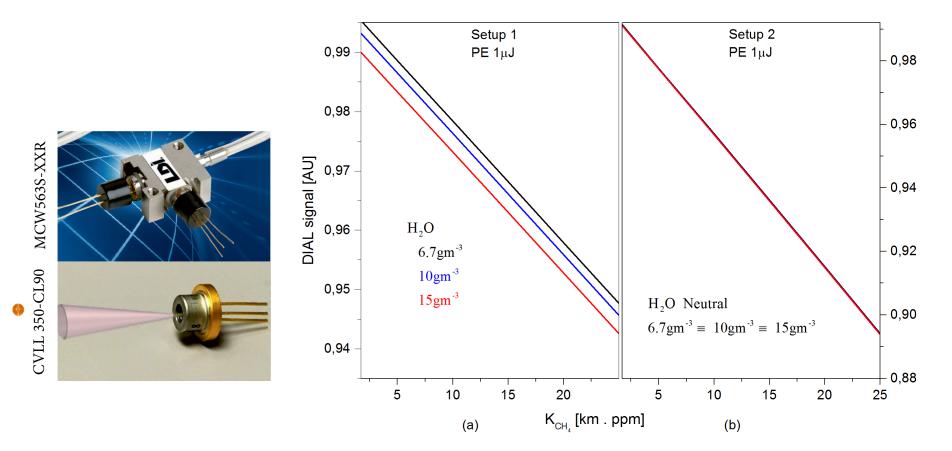
Fig.4 Multiplexed laser line as on the previous Figure 3 modulated by CH₄ spectrum of 10ppm GMR

[3] S.Penchev, V.Pencheva, T.Dreischuh, BG Utility model, Reg. № 4239, 2022. Fig.3 Multiplexed laser line of $1.667\mu m$ wavelength modulated by H₂O spectrum of $10gm^{-3}$ GMR on 1.5kmlidar path: (a) "Off" band formed by a notch filter; (b) "On" band formed by a bandpass filter (scaled up along x-axis)

Lidar returns of laser frequency v_0 modulated by multiple absorption lines of frequencies v_n are given by a convolution integral:

$$C = \int_{v} \exp\left[-4\ln 2\left(\frac{v - v_{0}}{\Delta v_{1}}\right)^{2} - K\sum_{n} S_{n} \frac{\Delta v_{a}^{2}/4}{\left(v - v_{n}\right)^{2} + \Delta v_{a}^{2}/4}\right] dv$$

Multiplexation of DIAL signal


For weak absorption, the exponent in Exp.1 is approximated by difference, modulated by step- functions β and (1- β) taking values of unity and zeros:

$$I_{\text{DIAL}} = \frac{C_{\text{on}}}{C_{\text{off}}} = \frac{\int_{v} \beta f_{\text{G}} \left(1 - K \sum_{n} f_{\text{L}}\right) dv}{\int_{v} (1 - \beta) f_{\text{G}} dv}$$

Assuming equal intensities of absorption by water vapor in both spectral channels, results in an expression which depends solely on methane GMR:

$$I_{\text{DIAL}} \approx 1 - \frac{\int_{v} \beta f_{\text{G}} \left(K \sum_{n} f_{\text{L}} \right)_{\text{CH}_{4}} dv}{\int_{v} \beta f_{\text{G}} dv}$$

Validation of absorption function

Absorption function for two LD types of 1μJ pulse energy vs. product K of CH₄ GMR and lidar path for different values of humidity:
(a) paired LD of 1.625μm- 1.667μm wavelengths and 8nm linewidth;
(b) multiplexed LD radiation of 1.667μm wavelength and 15nm linewidth

Prospective application

B eneath vast plains of Arctic tundra and swampy taiga forests lies permanently frozen ground, or permafrost. As northern polar regions continue to warm at a rate twice the global average, this permafrost begins to thaw. Unfrozen, waterlogged soils are like witches' cauldrons for methane, a greenhouse gas 25 times more potent than carbon dioxide.

- Diurnal monitoring of greenhouse gases affecting the global climate
- Mobile and airborne surveillance, particularly of inaccessible areas
- On demand safety controll of gas pipeline leaks
- Reconnaisance of energy resources

