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In each time step we add one new node andlink it to the older i-th node according to probability [1]:

• τi = t− ti – age difference between nodes
• ki(t) – degree of node i at time t
• α and β – model parameters

Model modifications: we allow addition of multiple number of nodes (M) and link them to L old nodeswhich are selected according to probability Πi(t).

D-MEASURE

Differences between two networks, G and G
′

are given by D-measure [2]:

Through Jensen-Shannon divergence J wecalculate dissimilarities between:
• nodes distance distributions Pi

NND(G) = J(P1(G),..PN (G))
log(dG)

• averaged nodes distance distributions
µ(G), µ(G′

).

RESULTS
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Growth signals
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Comparison between networks grown with growthsignalsM(t) and constant signalM = 1 .
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Πi(t) ∼ ταi ki(t)
β α = 0 and β = 0 – randomnetwork

α = 0 and β = 1 –Barabasi-Albert model
α < −0.5 and β > 0 – reinstatescale-free properties
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We use growth signals from real social networks. Signals represent the number of new members at each time step: 1) TECH social group, from the Meetup website [3]; 2)My SpaceReal signals are long-range correlated and have multifractal properties. To remove correlations, the original signals are randomised, keeping the average value and standard deviation.
Poisson signal: uncorrelated random signal

• Generate networks for different parameters of the aging model,
α and β and the number of links L=1, L=2 and L=3, while thenumber of nodes follows growth signalsM(t) [4]

• Generate the networks with the same number of nodes and val-ues of model parameters whose growth was constant,M = 1

• Compare the structure of evolving networks forM(t) andM = 1using D-measure

Growth signal is an important parameterfor the evolution of complex networks.Stronger influence on the structure ofscale-free networks.
Signals with trends, cycles and long-rangecorrelations can change the topologicalproperties of the networks.


