Variability of massive stars in IC342 galaxy

Antoniya Valcheva ${ }^{1}$

Co-authors: Nikolay Tikhonov ${ }^{2}$, Olga Galazutdinova², Olga Sholukhova² ${ }^{2}$ and Petko Nedialkov ${ }^{1}$
${ }^{1}$ Department of Astronomy, Sofia University, Bulgaria
${ }^{2}$ Special astrophysical observatory, Northern Caucasus, Russia

Main Goals

Program for searching of high luminosity stars beyond the Local Group

- Find massive and luminous star candidates in galaxies beyond the Local group;
- Spectral observation to reveal the true nature;
- Photometric optical monitoring to study optical properties and variability;
- Obtain astrophysical properties - SED, luminosity, effective temperature, mass, size, etc. (to be done).

Main Goals

Program for searching of high luminosity stars beyond the Local Group

- Find massive and luminous star candidates in galaxies beyond the Local group;
- Spectral observation to reveal the true nature;
- Photometric optical monitoring to study optical properties and variability;
- Obtain astrophysical properties - SED, luminosity, effective temperature, mass, size, etc. (to be done).
- Target: IC 342 (d=3.3 Mpc)
$\mathrm{RA}(\mathrm{J} 2000)=034649.7 \quad \mathrm{DEC}(\mathrm{J} 2000)=+680545$
- Near the equator of the Milky Way's disc => large amount of material - glowing gas and obscuring dust, bright stars.
>80 luminous and massive stars candidates selected in IC342 on the base of our B+Ha images obtained with the 2 m RCC telescope at NAO Rozhen, Bulgaria.

Massive stars candidates

7 massive star candidates selected in a $10^{\prime} \times 10^{\prime}$ field in northeast part of IC342 on the base of our B+Ha images obtained with the 2 m RCC telescope at NAO Rozhen, Bulgaria.

Spectral confirmation: 05/06 Jan 2021 UW05
DIS B400/R300 4900/6300A slit 0.9" at 3.5m telescope of A pache point observatory, USA

IC342_71, 3x1200s, sg. 1.4" clear sky IC342_73-74, 3x1200s, sg. 1.4" clear sky
\#71 and \#73 spectra contain bright emissions of the surrounding nebula - broad H -alpha line, visible H -beta, neutral helium HeI [6678] with a possible PCyg profile, nitrogen [NII] and Fe lines.

[^0]
IC 342 with the 2 m NAO Rozhen

Through B-filter

FoV 21.2'x19.1'

- IC 342 is covered by 4 fields of 10^{\prime} x 10^{\prime} with the FoReRo2 - a two-channel focal reducer at the 2 m telescope at NAO Rozhen, Bulgaria.

IC 342 with the 2 m NAO Rozhen

Through B-filter
FoV 21.2'x19.1'
F1 (10' $\mathbf{x} 10^{\prime}$)

Through R-filter
'F1 (6'x6')

- IC 342 is covered by 4 fields of $10^{\prime} \times 10^{\prime}$ with the FoReRo2 - a two-channel focal reducer at the 2 m telescope at NAO Rozhen, Bulgaria.
- Additional observations of the massive stars in the direct focus of the 2 m telescope at NAO Rozhen, Bulgaria. The field is covering and aria of $6^{\prime} \times 6^{\prime}$.

IC 342 with the 2 m NAO Rozhen

Observing log

Date	Instrument	FoV	Filter	Exposure	Seeing
$28 / 10 / 2019$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B	9 x 300 sec	$\sim 1.8^{\prime \prime}$
$22 / 11 / 2020$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	R	5 x 300 sec	$\sim 2.0^{\prime \prime}$
$07 / 08 / 2021$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 2.4^{\prime \prime}$
$11 / 09 / 2021$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 2.0^{\prime \prime}$
$04 / 01 / 2022$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 3.0^{\prime \prime}$
$06 / 01 / 2022$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 2.5^{\prime \prime}$
$27 / 02 / 2022$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 2.4^{\prime \prime}$
$29 / 06 / 2022$	$2 \mathrm{~m} /$ FoReRo2	$10^{\prime} \mathrm{x} 10^{\prime}$	B,R	5 x 300 sec	$\sim 2.2^{\prime \prime}$
$03 / 07 / 2022$	$2 \mathrm{~m} /$ Direct	$6^{\prime} \mathrm{x} 6^{\prime}$	R	5 x 300 sec	$\sim 2.4^{\prime \prime}$

- Time coverage: ~ 32 months $\rightarrow 9$ epochs;

- Initial reduction; alignment; combination = sum;
- PSF photometry of all stars in the field
- Calculated standard magnitudes in gr Pan-STARRS filters using stable stars around the LBVs in PS1.

IC 342 in Pan-STARRS

Downloaded individual images of $150^{\prime \prime} \times 150^{\prime \prime}$ area in gr filters from Pan-STARRS-1:

- Time coverage:
from 11-17-2010 to 12-22-2014.
- 11 epochs in g (seeing $1.4^{\prime \prime}-2.5^{\prime \prime}$)
- 11 epochs in r (seeing $1.4^{\prime \prime}-1.8^{\prime \prime}$)
- Aperture photometry of the individual images.
- Calibration using stable stars in the field and PS1 magnitudes.

gr light curves of var71

g light curve: 11 PS1 epochs (triangles) +9 Rozhen epochs (filled circles)

- Var 71 in red
- Comparison field star in black
- Max g amplitude for 6.6 yrs is $\Delta \mathrm{g}=0.62 \mathrm{mag}$.
- Rozhen g amplitude is $\Delta \mathrm{g}=0.24$ mag (2.6 yrs).
$\underline{\text { r light curve: } 11 \text { PS1 epochs }}$
(triangles) +9 Rozhen epochs (filled circles)
- Var 71 in red
- Comparison field star in black
- Max r amplitude for 6.6 yrs is $\Delta \mathrm{r}=0.42 \mathrm{mag}$.
- Rozhen r amplitude is $\Delta \mathrm{r}=0.18 \mathrm{mag}$ (2.6 yrs).

gr light curves of var73

g light curve: 11 PS1 epochs
(triangles)+9 Rozhen epochs
(filled circles)

- var71 in red
- Comparison field star in black
- Max g amplitude for 6.6 yrs is $\Delta \mathrm{g}=0.41 \mathrm{mag}$.
r light curve: 11 PS1 epochs (triangles) +9 Rozhen epochs (filled circles)
- var71 in red
- Comparison field star in black
- Max r amplitude for 6.6 yrs is $\Delta \mathrm{r}=0.40 \mathrm{mag}$.
- Rozhen r amplitude is $\Delta \mathrm{r}=0.18$ mag (2.6 yrs).

IC 342 with HST

The Giant Hiding in Our Backyard: The Nearby Spiral Starburst Galaxy IC 342

HST Proposal 16002
PI: Paul Sell / University of Florida

Cycle: 27

Status: completed April 2019
No published paper yet (ADS)
In BV (F450\&F555) filters

Var71: HST (10"x10") image

Left: HST image ($10^{\prime \prime} \times 10^{\prime \prime}$);
Right: position of stellar-like objects with $\mathrm{m}<24$ mag in the field $10^{\prime \prime} \times 10^{\prime \prime}$

Our PSF photometry (DOLPHOT-2 package), performed by N. Tikhonov (SAO), shows that var71 is a non-stellar object (the blob in the center of the image).

Var71: HST color-magnitude diagram

The circle of radius $1.4^{\prime \prime}$ is shown in the inner panel to visualize the stars that lie very near to var71 (this size is nearly equal to the seeing of Rozhen and PS1 images).

- Color-magnitude diagram of stellar-like objects around var71 in the circle of radius $1.4^{\prime \prime}$.
- All the star in the circle have magnitudes >23 mag and their contribution to var71 is negligible.
- The brightest stars in the field (denoted with 1,2 and 3) are also show in the diagram for comparison).
* HST magnitudes are converted in gr PS1 magnitudes using the transformations from Kostov \& Bonev 2018, BlgAJ, 28, 3.
- The red dot gives the integral magnitude of var71 in Pan-STARRS-1.

Var73: HST (10"x10") vs. Rozhen images

Left: HST image ($10^{\prime \prime} \times 10^{\prime \prime}$);
Right: Rozhen image with $10^{\prime \prime}$ x10" superimposed HST field with stellar-like objects

Positions of the nearest stars around var73

- Two bright stars at the position of var73 are resolved at distance of $0.4^{\prime \prime}$.

Var73: HST color-magnitude diagram

Color-magnitude diagram of 68 stars with PSF photometry around var73 in the circle of radius $1.4^{\prime \prime}$ (shown in the inner panel).

- The position of the brightest stars in the circle is denoted in the CMD.
- Mainly stars \#1 and \#2 contribute to the integral brightness of var73.
- The red dot gives the integral magnitude of var73 in Pan-STARRS-1.
*HST magnitudes are converted in gr PS1 magnitudes using the transformations from Kostov \& Bonev 2018, BlgAJ, 28, 3.

Var 73 light budget

- Rozhen observations (MJD=58785.38) and HST observations (MJD=58769.26) are taken close in time.
- We can use HST resolution to decompose the obtained magnitudes (Rozhen anda PS1) into components and to make deeper analysis.

Under the assumption that only star \#1 varies and the other contribution is constant, we can solve new light curve for var 73.
flux(\#1)=flux(Rozhen/PS1) - flux(Resolved stars) -
flux(Unresolved)
Results: The amplitudes increase:
$\Delta \mathrm{g}=0.41->0.97 \mathrm{mag}$
$\Delta \mathrm{r}=0.4->1.1 \mathrm{mag}$
*If \#2 is the one that varies, the amplitudes could be even much larger.

Name	Instrument	g $[\mathrm{mag}]$	r $[\mathrm{mag}]$	(g-r) $[\mathrm{mag}]$
Var 73	Rozhen MJD=58785.38	18.52	$\mathbf{1 8 . 0 5}$	0.47
=======	=======	$====$	===	$======$
\#1 star	HST MJD=58769.26	19.52	19.09	0.43
Resolved stars in 1.4" radius (without \#1)	HST MJD=58769.26	19.58	19.21	0.37
Unresolved stars	HST MJD=58769.26	20.06	19.47	$0.58!$ redder, due to H- alpha
Total HST		$\mathbf{1 8 . 5 2}$	$\mathbf{1 8 . 0 5}$	

gr new light curves of var73

Monte Carlo simulations

- We generate a set of 20 points (light curve) from a constant source with the measured mean magnitude of var71, var73 and var73_recalc.
- Each of these points was generated according to a Gaussian distribution with the observational error of the corresponding measurement.
- For each object we performed 1000000 simulations for:
- 2 bands ($\mathrm{g} \& \mathrm{r}$); 2 modes of error estimations (median errors; individual observational errors)
- We check whether the rms of the generated light curves exceeds the rms of the observed light curves.
- We obtain the percentage of the cases the data are inconsistent with a constant source in all 12 cases:

Name	g-filter		r-filter	
	med_err	ind_err	med_err	ind_err
Var 71	99.9999	100	99.50	100
Var 73	99.994	100	99.98	100
Var 73 recalc	100	100	100	100

- We applied the same procedure also to the light curves of the comparison stable star and the percentage of the cases in which the data are inconsistent with a constant source are: $\mathbf{2 . 5} \%$ in r-filter; $\mathbf{6 4 . 5} \%$ in \mathbf{g}-filter.

Summary

- We report BR-bands monitoring of 2 spectroscopically confirmed massive young star in the north-east quarter of the IC342 galaxy obtained with the 2 m RCC telescope at NAO Rozhen, Bulgaria.
- We analyzed 2.6 yr gr-light curves of the objects and detected photometric variations smaller than 0.3 mag and no overall brightness changes.
- We supplemented our photometry with gr photometry from Pan-STARRS-1 and expanded the light curve time coverage to 6.6 yrs. The obtained amplitudes are: for var71 $\Delta \mathrm{g}=0.62 \mathrm{mag}$ and $\Delta \mathrm{r}=0.42 \mathrm{mag}$; for var $73-\Delta \mathrm{g}=0.41 \mathrm{mag}$ and $\Delta \mathrm{r}=0.40 \mathrm{mag}$.
- To check for a blending effect of neighboring stars on our photometry we use BV HST magnitudes, obtained by us using the DOLPHOT 2 package.
- Accounting for the blending effect, we recalculate the gr light curves of var73 and larger amplitudes were obtained: $\Delta \mathrm{g}=0.97 \mathrm{mag}$ and $\Delta \mathrm{r}=1.1 \mathrm{mag} \rightarrow$ consistent with the time variations of LBV stars.

Acknowledgments

Thank you for your attention!

The study was financially supported by the National Science Foundation of Bulgaria as a part of the bilateral scientific project KP-06-Russia-9/2019. We also would like to refer National RI Roadmap Project DO1-176/29.07.2022 with Ministry of Education and Science of the Republic of Bulgaria

[^0]: * The analysis of the spectral observations will be discussed in different study.

