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= Nonrelativistic energy spectra of three-particle systems
= calculated in the adiabatic approach by using finite

difference method
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Three-particle systems

The precise spectroscopy of light atomic and molecular systems gives
us new insides in the fundamental laws and physical constants of na-
ture [1, 2]. From theoretical point of view, development of accurate
techniques like adiabatic and variational methods give us the tools to
compute different atomic quantities with the needed precision [3].

The nonrelativistic Hamiltonian of a three-particle system in atomic
units 1s
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H:

Here, p;, m;, and Z;,7 = 1, 2, 3 are the particles momentum, mass, and
charge and the distances between them are r, 79, and R = |r; — r9| as
shown on Fig. 1

Spheroidal coordinates

In the center-of-mass frame, in
a coordinate system co-rotating
with the plane containing the
three particles, by using the fol-
lowing transformations:

A= (r;+719)/R, <A<
p=(ri—ry)/R, —-1<p<1
R3

dV = §<A2 — 1) Ndpdy

ms3(my + mo)

M —
(m1 + mg + ms)

The Hamiltonian can be written

. ) ) Figure 1: Three-particle system in prolate
in spheroidal coordinates [4]: 5 : y p

spheroidal coordinates.
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The electronic terms """ are found by solving

Hsphq)m,nk,nM(R; )\7 u) _ gm,n,\,nuq)m,m,nu(R; )\’ ,LL)

The separation constant m = 0,1,2,... 1s a solution to the equation
(d*Q/dw?) + m?*Q =0, 0<uw < 2.
The total electronic wavefunction i1s given by

¢’m,n;\,nu(R; A, ,u,w) _ (I)mvn)wnu(R; ), M)@){\I;:;:w.

Finite difference method with logarithmic stencil

The wavefunctions &« (R; A\, ;1) and the corresponding eigenval-

ues """ for a number of low-excited electronic states with quantum

numbers (m,n)y,n,) are found by a two-dimensional finite difference
method [5]. As an alternative to other calculations, to increase the pre-
cision, we use a logarithmic stencil. The N point stencil coefficients
a;,t =0, .., N —1{for at the point z; = ozhj, h; = ho+jA are calculated
by solving the system:
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For example, to implement a five point central logarithmic stencil, we
have to set the following numerical values in the equation above: N = 5
and p = —2. In this case the d*’* order derivative of the function f(x ;)

| 1S f(xj)<d) = Zizo akf(xj—2+k)-

Solving electronic Schrodinger equation

The electronic wavefunctions and the corresponding eigenvalues for
systems with charges (41 = 1,29 = 1,43 = —1) and (4] = 2,29 =
—1, Z3 = —1) have been calculated. A few examples with both equally
spaced (ES) and logarithmic stencil and comparison with existing re-
sults are given 1n the table.

E,a.u. (Hy like) E. a.u. (pHe like)

lsog lo
—1.1026343945244 [ES]| — 1.5093601913 [ES]
—1.1026342144924  |Logig|| — 1.5093584825 [Logq]
—1.102634214497  Ref. [5]| — 1.5093585 Ref. [7]
—1.1026342144949 Ref. [6]

2P0y, 20
—0.6675342981312 [ES] | — 0.2505320492 [ES
—0.6675343922038  |Logig] | — 0.2505328701  |Logio
—0.667534392205  Ref. [5]| — 0.2505329 Ref. [7]
—0.6675343922024 Ref. [6]

Table 1: Energies, in atomic units, of the first electronic states of H; and pHe like
systems at R =2 a.u.

Nonrelativistic energy spectra

The nonrelativistic energy [, ; for states, with vibrational and rotational
quantum numbers v and .J, of a three-particle system are found in the
adiabatic approach by solving a system of eigenvalue problems [4]:

{d—2 +2MFE,; — U@{(R>} Xi(R) = i Uij(R)x;(R),

s 7]
Uij = (J(J + 1) — 2m + 2M21Z2R)/R2 + UZZ(R), 1, ] = (m, N\, nu).

The potential U;;(RR) is a combination of matrix elements UZ-/;-(R) =
USi(R; ¢',¢7,d¢' /dR, d¢' /dR, €' &), de' /AR, de’ /[dR) as shown for
example in [4]. When the electronic state mixing is ignored (U; () =
0, ¢ # j) and U;;(R) includes only the electronic terms &', the Born-
Oppenheimer (BO) approximation is obtained. The diagonal matrix el-

ements U;;( R) for lower electronic states of H;r and pHe are computed
by the finite difference method with logarithmic stencil.

State E.a.u.
(v, J) BO DC Ref. [8]
Hy

(0,0) —0.597397 —0.597300 —0.597139063079
(0,1) —0.597131 —0.597035 —0.596873738784
(1,0) —0.587410 —0.587313 —0.587155679096

pHe
(0,38) —2.724341 —-2.724101  —2.72412478
(0,36) —2.886792 —2.886490  —2.88668236
(3,36) —2.643387 —2.643203  —2.64324803

Table 2: Nonrelativistic energies in atomic units of the Hj and pHe states and
(v = 1,J = 0) in Born-Oppenheimer approximation (BO) and with diagonal adia-
batic corrections (DC).
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