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Three-particle systems
The precise spectroscopy of light atomic and molecular systems gives
us new insides in the fundamental laws and physical constants of na-
ture [1, 2]. From theoretical point of view, development of accurate
techniques like adiabatic and variational methods give us the tools to
compute different atomic quantities with the needed precision [3].
The nonrelativistic Hamiltonian of a three-particle system in atomic
units is
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Here, pi,mi, and Zi, i = 1, 2, 3 are the particles momentum, mass, and
charge and the distances between them are r1, r2, and R = |r1 − r2| as
shown on Fig. 1

Spheroidal coordinates
In the center-of-mass frame, in
a coordinate system co-rotating
with the plane containing the
three particles, by using the fol-
lowing transformations:

λ = (r1 + r2)/R, 1 ≤ λ < ∞
µ = (r1 − r2)/R, −1 ≤ µ ≤ 1

dV =
R3

8
(λ2 − µ2)λdµdφ

M =
m3(m1 +m2)
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The Hamiltonian can be written
in spheroidal coordinates [4]:

Figure 1: Three-particle system in prolate
spheroidal coordinates.
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The electronic terms εm,nλ,nµ are found by solving

HsphΦm,nλ,nµ(R;λ, µ) = εm,nλ,nµΦm,nλ,nµ(R;λ, µ).

The separation constant m = 0, 1, 2, ... is a solution to the equation
(d2Ω/dω2) +m2Ω = 0, 0 ≤ ω ≤ 2π.
The total electronic wavefunction is given by
ϕm,nλ,nµ(R;λ, µ, ω) = Φm,nλ,nµ(R;λ, µ)exp

±imω
√
2π

.

Finite difference method with logarithmic stencil
The wavefunctions Φm,nλ,nµ(R;λ, µ) and the corresponding eigenval-
ues εm,nλ,nµ for a number of low-excited electronic states with quantum
numbers (m,nλ, nµ) are found by a two-dimensional finite difference
method [5]. As an alternative to other calculations, to increase the pre-
cision, we use a logarithmic stencil. The N point stencil coefficients
ai, i = 0, .., N−1 for at the point xj = αhj, hj = h0+j∆ are calculated
by solving the system:
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For example, to implement a five point central logarithmic stencil, we
have to set the following numerical values in the equation above: N = 5
and p = −2. In this case the dth order derivative of the function f (xj)

is f (xj)(d) =
∑4

k=0 akf (xj−2+k).

Solving electronic Schrödinger equation
The electronic wavefunctions and the corresponding eigenvalues for
systems with charges (Z1 = 1, Z2 = 1, Z3 = −1) and (Z1 = 2, Z2 =
−1, Z3 = −1) have been calculated. A few examples with both equally
spaced (ES) and logarithmic stencil and comparison with existing re-
sults are given in the table.

E, a.u. (H+
2 like) E, a.u. (p̄He like)

1sσg 1σ
−1.1026343945244 [ES] − 1.5093601913 [ES]
−1.1026342144924 [Log10] − 1.5093584825 [Log10]
−1.102634214497 Ref. [5] − 1.5093585 Ref. [7]
−1.1026342144949 Ref. [6]

2pσu 2σ
−0.6675342981312 [ES] − 0.2505320492 [ES]
−0.6675343922038 [Log10] − 0.2505328701 [Log10]
−0.667534392205 Ref. [5] − 0.2505329 Ref. [7]
−0.6675343922024 Ref. [6]

Table 1: Energies, in atomic units, of the first electronic states of H+
2 and p̄He like

systems at R = 2 a.u.

Nonrelativistic energy spectra
The nonrelativistic energy EνJ for states, with vibrational and rotational
quantum numbers ν and J , of a three-particle system are found in the
adiabatic approach by solving a system of eigenvalue problems [4]:{

d2

dR2
+ 2MEνJ − UJ

ii(R)

}
χi(R) =

∞∑
i ̸=j

Uij(R)χj(R),

Uij = (J(J + 1)− 2m + 2MZ1Z2R)/R2 + Uii(R), i, j ≡ (m,nλ, nµ).

The potential Uij(R) is a combination of matrix elements Uk
ij(R) =

Uk
ij(R;ϕi, ϕj, dϕi/dR, dϕi/dR, εi, εj, dεi/dR, dεj/dR) as shown for

example in [4]. When the electronic state mixing is ignored (Uij(R) =

0, i ̸= j) and Uii(R) includes only the electronic terms εi, the Born-
Oppenheimer (BO) approximation is obtained. The diagonal matrix el-
ements Uii(R) for lower electronic states of H+

2 and p̄He are computed
by the finite difference method with logarithmic stencil.

State E, a.u.

(ν, J) BO DC Ref. [8]
H+
2

(0,0) −0.597397 −0.597300 −0.597139063079
(0,1) −0.597131 −0.597035 −0.596873738784
(1,0) −0.587410 −0.587313 −0.587155679096

p̄He
(0,38) −2.724341 −2.724101 −2.72412478
(0,36) −2.886792 −2.886490 −2.88668236
(5,36) −2.643387 −2.643203 −2.64324803

Table 2: Nonrelativistic energies in atomic units of the H+
2 and p̄He states and

(ν = 1, J = 0) in Born-Oppenheimer approximation (BO) and with diagonal adia-
batic corrections (DC).
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