P. Danev, H. Tonchev

Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences,

blvd. Tsarigradsko ch. 72, Sofia 1142, Bulgaria

Three-particle systems

The precise spectroscopy of light atomic and molecular systems gives us new insides in the fundamental laws and physical constants of nature [1, 2]. From theoretical point of view, development of accurate techniques like adiabatic and variational methods give us the tools to compute different atomic quantities with the needed precision [3].
The nonrelativistic Hamiltonian of a three-particle system in atomic units is

$$
H=\frac{\mathbf{p}_{1}^{2}}{2 m_{1}}+\frac{\mathbf{p}_{2}^{2}}{2 m_{2}}+\frac{\mathbf{p}_{3}^{2}}{2 m_{3}}+\frac{Z_{1} Z_{3}}{r_{1}}+\frac{Z_{2} Z_{3}}{r_{2}}+\frac{Z_{1} Z_{2}}{R}
$$

Here, \mathbf{p}_{i}, m_{i}, and $Z_{i}, i=1,2,3$ are the particles momentum, mass, and charge and the distances between them are r_{1}, r_{2}, and $R=\left|\mathbf{r}_{1}-\mathbf{r}_{2}\right|$ as shown on Fig. 1

Spheroidal coordinates

In the center-of-mass frame, in a coordinate system co-rotating with the plane containing the three particles, by using the following transformations:
$\lambda=\left(r_{1}+r_{2}\right) / R, \quad 1 \leq \lambda<\infty$
$\mu=\left(r_{1}-r_{2}\right) / R, \quad-1 \leq \mu \leq 1$
$d V=\frac{R^{3}}{8}\left(\lambda^{2}-\mu^{2}\right) \lambda d \mu d \varphi$
$M=\frac{m_{3}\left(m_{1}+m_{2}\right)}{\left(m_{1}+m_{2}+m_{3}\right)}$
The Hamiltonian can be written in spheroidal coordinates [4]:

Figure 1: Three-particle system in prolate spheroidal coordinates.

$$
\begin{aligned}
& H^{s p h}=\frac{-2}{M R^{2}\left(\lambda^{2}-\mu^{2}\right)}\left[\frac{\partial}{\partial \lambda}\left(\lambda^{2}-1\right) \frac{\partial}{\partial \lambda}+\frac{\partial}{\partial \mu}\left(1-\mu^{2}\right) \frac{\partial}{\partial \mu}-\right. \\
& \left.\frac{m^{2}\left(\lambda^{2}-\mu^{2}\right)}{\left(\lambda^{2}-1\right)\left(1-\mu^{2}\right)}\right]+\frac{2 Z_{1} Z_{3}}{R\left(\lambda^{2}-\mu^{2}\right)}\left[\lambda\left(\frac{Z_{2}}{Z_{1}}+1\right)+\mu\left(\frac{Z_{2}}{Z_{1}}-1\right)\right]
\end{aligned}
$$

The electronic terms $\varepsilon^{m, n_{\lambda}, n_{\mu}}$ are found by solving

$$
H^{s p h} \Phi^{m, n_{\lambda}, n_{\mu}}(R ; \lambda, \mu)=\varepsilon^{m, n_{\lambda}, n_{\mu}} \Phi^{m, n_{\lambda}, n_{\mu}}(R ; \lambda, \mu)
$$

The separation constant $m=0,1,2, \ldots$ is a solution to the equation $\left(d^{2} \Omega / d \omega^{2}\right)+m^{2} \Omega=0, \quad 0 \leq \omega \leq 2 \pi$.
The total electronic wavefunction is given by
$\phi^{m, n_{\lambda}, n_{\mu}}(R ; \lambda, \mu, \omega)=\Phi^{m, n_{\lambda}, n_{\mu}}(R ; \lambda, \mu) \frac{\exp ^{ \pm i m \omega}}{\sqrt{2 \pi}}$.

Finite difference method with logarithmic stencil

The wavefunctions $\Phi^{m, n_{\lambda}, n_{\mu}}(R ; \lambda, \mu)$ and the corresponding eigenvalues $\varepsilon^{m, n_{\lambda}, n_{\mu}}$ for a number of low-excited electronic states with quantum numbers $\left(m, n_{\lambda}, n_{\mu}\right)$ are found by a two-dimensional finite difference method [5]. As an alternative to other calculations, to increase the precision, we use a logarithmic stencil. The N point stencil coefficients $a_{i}, i=0, . ., N-1$ for at the point $x_{j}=\alpha^{h_{j}}, h_{j}=h_{0}+j \Delta$ are calculated by solving the system:
$\left(\begin{array}{cccc}1 & 1 & \ldots & 1 \\ \alpha^{p \Delta}-1 & \alpha^{(p+1) \Delta}-1 & \ldots & \alpha^{(p+N-1) \Delta}-1 \\ & \ldots & \ldots & \ldots \\ \left(\alpha^{p \Delta}-1\right)^{N-1} & \left(\alpha^{(p+1) \Delta}-1\right)^{N-1} & \ldots & \left(\alpha^{(p+N-1) \Delta}-1\right)^{N-1}\end{array}\right)\left(\begin{array}{c}a_{0} \\ a_{1} \\ \ldots \\ a_{N-1}\end{array}\right)=\frac{d!}{\alpha^{h_{j}}}\left(\begin{array}{c}\delta_{0 d} \\ \delta_{1 d} \\ \ldots \\ \delta_{N-1 d}\end{array}\right)$
For example, to implement a five point central logarithmic stencil, we have to set the following numerical values in the equation above: $N=5$ and $p=-2$. In this case the $d^{t h}$ order derivative of the function $f\left(x_{j}\right)$ is $f\left(x_{j}\right)^{(d)}=\sum_{k=0}^{4} a_{k} f\left(x_{j-2+k}\right)$.

Solving electronic Schrödinger equation

The electronic wavefunctions and the corresponding eigenvalues for systems with charges $\left(Z_{1}=1, Z_{2}=1, Z_{3}=-1\right)$ and ($Z_{1}=2, Z_{2}=$ $-1, Z_{3}=-1$) have been calculated. A few examples with both equally spaced (ES) and logarithmic stencil and comparison with existing results are given in the table.

$E, a . u .\left(\mathrm{H}_{2}^{+}\right.$like $)$		$E, a . u .(\bar{p} \mathrm{He}$ like)	
$1 s \sigma_{g}$		1σ	
-1.1026343945244	[ES]	-1.5093601913	[ES]
-1.1026342144924	$\left[\log _{10}\right]$	- 1.5093584825	$\left[\log _{10}\right]$
-1.102634214497	Ref. [5]	-1.5093585	Ref. [7]
-1.1026342144949	Ref. [6]		
$2 p \sigma_{u}$		2σ	
-0.6675342981312	[ES]	-0.2505320492	[ES]
-0.6675343922038	$\left[\log _{10}\right]$	-0.2505328701	$\left[\log _{10}\right]$
-0.667534392205	Ref. [5]	-0.2505329	Ref. [7]
-0.6675343922024	Ref. [6]		

Table 1: Energies, in atomic units, of the first electronic states of H_{2}^{+}and $\bar{p} \mathrm{He}$ like systems at $\mathrm{R}=2$ a.u.

Nonrelativistic energy spectra

The nonrelativistic energy $E_{\nu J}$ for states, with vibrational and rotational quantum numbers ν and J, of a three-particle system are found in the adiabatic approach by solving a system of eigenvalue problems [4]:
$\left\{\frac{d^{2}}{d R^{2}}+2 M E_{\nu J}-U_{i i}^{J}(R)\right\} \chi_{i}(R)=\sum_{i \neq j}^{\infty} U_{i j}(R) \chi_{j}(R)$,
$U_{i j}=\left(J(J+1)-2 m+2 M Z_{1} Z_{2} R\right) / R^{2}+U_{i i}(R), \quad i, j \equiv\left(m, n_{\lambda}, n_{\mu}\right)$. The potential $U_{i j}(R)$ is a combination of matrix elements $U_{i j}^{k}(R)=$ $U_{i j}^{k}\left(R ; \phi^{i}, \phi^{j}, d \phi^{i} / d R, d \phi^{i} / d R, \varepsilon^{i}, \varepsilon^{j}, d \varepsilon^{i} / d R, d \varepsilon^{j} / d R\right)$ as shown for example in [4]. When the electronic state mixing is ignored $\left(U_{i j}(R)=\right.$ $0, \quad i \neq j)$ and $U_{i i}(R)$ includes only the electronic terms ε^{i}, the BornOppenheimer (BO) approximation is obtained. The diagonal matrix elements $U_{i i}(R)$ for lower electronic states of H_{2}^{+}and $\bar{p} \mathrm{He}$ are computed by the finite difference method with logarithmic stencil.

State	$E, a . u$			
	BO	DC	Ref. [8]	
	H_{2}^{+}			
$(0,0)$	-0.597397	-0.597300	-0.597139063079	
$(0,1)$	-0.597131	-0.597035	-0.596873738784	
$(1,0)$	-0.587410	-0.587313	-0.587155679096	
$\bar{p} \mathrm{He}$				
$(0,38)$	-2.724341	-2.724101	-2.72412478	
$(0,36)$	-2.886792	-2.886490	-2.88668236	
$(5,36)$	-2.643387	-2.643203	-2.64324803	

Table 2: Nonrelativistic energies in atomic units of the H_{2}^{+}and $\bar{p} \mathrm{He}$ states and ($\nu=1, J=0$) in Born-Oppenheimer approximation (BO) and with diagonal adiabatic corrections (DC).

[^0]
[^0]: ## References

 [1] I.V. Kortunov et. al., Nature Physics 17, 569-573 (2021).
 [2] S. Schiller, D. Bakalov, and V.I. Korobov, Phys. Rev. Lett. 113, 023004 (2014).
 [3] P. Danev, D. Bakalov, V.I. Korobov, S. Schiller, Phys. Rev. A 103 (1), 012805 (2021). [4] S.I. Vinitskij, L.I. Ponomarev, J. Phys. B. (1978).
 [5] L. Laaksonen,P. Pyykkö, D. Sundholm, Int. J. Quantum Chem.y, 23, 309-317 (2004). [6] M. M. Madsen and J. M. Peek, At. Data 2, 171 (1971).
 [7] I. Shimamura,Phys.Rev A, 47, 7 (1992).
 [8] V.I. Korobov, Phys. Rev. A, 54, 3 (1996).

 ## Acknowledgements

 The authors gratefully acknowledge the support of the Bulgarian National Science Fund under Grant No. KP-06-M58/3 / 22.11.2021.

