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In theoretical physics, the Born—Infeld model is a particular
example of what Is usually known as a nonlinear
electrodynamics. It was historically introduced in the 1930s to
remove the divergence of the electron's self-
energy in classical electrodynamics by introducing an upper
bound of the electric field at the origin.
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Einstein-Born-Infeld-dilaton black holes in nonasymptotically flat spacetimes
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We derive exact magnetically charged, static, and spherically symmetric black hole solutions of the
four-dimensional Einstein-Born-Infeld-dilaton gravity. These solutions are neither asymptotically flat nor
(anti)-de Sitter. The properties of the solutions are discussed. It is shown that the black holes are stable
against linear radial perturbations.
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We construct some classes of electrically charged, static and spherically symmetric black hole solutions
of the four-dimensional Einstein-Born-Infeld-dilaton gravity in the absence and presence of Liouville-
type potential for the dilaton field and investigate their properties. These solutions are neither asymptoti-
cally flat nor (anti)-de Sitter. We show that in the presence of the Liouville-type potential, there exist two
classes of solutions. We also compute temperature, entropy, charge and mass of the black hole solutions,
and find that these quantities satisfy the first law of thermodynamics. We find that in order to fully satisfy
all the field equations consistently, there must be a relation between the electric charge and other
parameters of the system.

In the present work we consider stringy Einstein-Born- We consider the four-dimensional action in which grav-
Infeld-dilaton (EBId) gravity described by the action [3—6] ity is coupled to dilaton and Born Infeld fields with an
action
S = [deymER ~ 280,000 + Ll (1)
S = [d'x/TRR ~ 2AVE2 ~ V() + LIE.4) (1)
where R is the Ricci scalar curvature with respect to the

spacetime metric g, and ¢ is the dilaton field. The Born- where R is the Ricci scalar curvature, ¢ is the dilaton fie¥

Infeld (BI) part of the action is given by and V(¢) is a potential for ¢. The Born-Infeld L(F, ¢) part
of the action is given by
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»  Friedmann-Lemaitre-Robertson-Walker metric

de
1-kx?

ds* =di* — az(t){ +x°(d6” +sin® 6 dg’ )}

equivalent to
ds® = dt* 7a2(t){d;/ + £2()(d6’ +sin” 6 dg’ )}

where
siny < k=+1 spherical

D=y x < k=0 flat
sinhy < k=-1 hyperbolic




Special case:

In this study, we shall consider the case of magnetic charged dilatonic black hole. There is a single event horizon

rg = Lrg, and therefore the line element takes the form

t t'cal-l ﬁat_
ds® = —h(r)dt® + h(r)tdr? + rdQ? 'nonasymptotically

where h(r) = (r — rg)/L. Therefore the metric is characterized by two length scales L,ry which are given
functions of the three free parameters of the model, namely the black hole mass M, the Born-Infeld parameter
v, and the mass scale A in dilaton’s potential. Note that ry depends on all three free parameters, while L
does not depend on the mass of the black hole.
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The quasilocal mass

L' =2(1 - A -2H),

where the constant H is given by [13]

Hawking temperature is Ty = 1/(4xL) —y + \/ y(Q* +7)



following Maxwell equation

F =dA.
with the following pure magnetic potential

A= —Q cosfdy,
which leads to

F' = Qsinfdf N d.

In the NP formalism , massless Dirac equations with charge coupling are given as follows
D +igl Aj +e—p| Fi+ [0 +igm! Aj + m — a] Fo =0,

[6—|—iqmjAj —l—ﬁ—'r] Fi1+ [A+iqnjAj -I—,u—’y:

[D +igll A; +E— 5] Go — [6 +igm! A; + 7 — @] G1 =0,

[A+ign A; +E—7)G1— [0 +igm? A; + B —7] G2 =0,
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Dark Side of Black Holes: Dark
Matter Could Explain the Early
Universe's Giant Black Holes

Massive black holes should not have existed in a universe less than one billion years old, yet
they did




PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent Accepted Authors Referees Search

Dilatonic dark matter and its experimental detection Searching for dilaton dark matter with atomic clocks

Y. M. Cho and J. H. Kim Asimina Arvanitaki, Junwu Huang, and Ken Van Tilburg
Phys. Rev. D 79, 023504 — Published 7 January 2009 Phys. Rev. D 91, 015015 — Published 21 January 2015

PHYSICAL REVIEW LETTERS

Theoretical and Mathematical Physics
: . . March 2018, Volume 194, |ssue 3, pp 415-438 | Cite as
Highlights =~ Recent  Accepted Collections  Authors  Referees . . i . .
Anisotropic Cosmology with a Dilaton Field Coupled to

Ghost Dark Energy
Dark matter, time-varying G, and a dilaton field

Authors Authors and affiliations

T. Damour, G.W. GibeﬂS, and C. Gundlach H. Hossienkhani [~ , V. Fayaz, S. A. A. Terohid, N. Azimi, Z. Zarei, M. Ganji
Phys. Rev. Lett. 64, 123 — Published 8 January 1990

Article
First Online: 04 April 2018

PHYSICAL REVIEW LETTERS

16

Modern Physics Letters A | Vol. 13, No. 02, pp. 109-117(1998) | Research Papers

DILATONIC DARK MATTER — A NEW PARADIGM

Y. M.CHO and Y. Y. KEUM Highlights Recent Accepted Collections Authors

Journal of Cosmology and Astroparticle Physics

Dilaton-Assisted Dark Matter

Yang Bai, Marcela Carena, and Joseph Lykken
Can dark matter be a scalar field? Phys. Rev. Lett. 103, 261803 — Published 30 December 2009

JL.F. Jesus®, S.H. Pereira®, J.L.G. Malatrasi® and F. Andrade-Oliveira®
Published 22 August 2016 « © 2016 0P Publishing Ltd and Sissa Medialab srl
Journal of Cosmologdy and Astroparticle Physics, Volume 2016, August 2016




PHYSICAL REVIEW D

covering particles, fields, gravitation, and cosmology

Highlights Recent Accepted Collections Authors REIEIEES Search Press About Editorial Team

Higgs-dilaton cosmology: An inflation—dark-energy connection and
forecasts for future galaxy surveys

Santiago Casas, Martin Pauly, and Javier Rubio
Phys. Rev. D 97, 043520 - Published 20 February 2018

@ Springer Link ‘

Regular Article - Theoretical Physics | Open Access | Published: 07 October 2020

Heavy dark matter through the dilaton portal

Benjamin Fuks , Mark D. Goodsell, Dong Woo Kang, Pyungwon Ko, Seung J. Lee & Manuel Utsch

{ High Enerqy Physics I PHYSICAL REVIEW D

171 Accesses ‘ 4 Citations | 1 Altmetric | Metrics : ) -
covering particles, fields, gravitation, and cosmology

Highlights ~ Recent  Accepted  Collections  Authors  Referees Search  Press  About  Editorial Teg
@ Springer Link

Regular Article - Theoretical Physics ‘ Open Access | Published: 07 April 2020

Gravity-mediated dark matter in clockwork/lineai] Primordial black hole dark matter in dilaton-extended two-field
dilaton extra-dimensions Starobinsky inflation

el e Ealla e B e G e Anirudh Gundhi, Sergei V. Ketov, and Christian F. Steinwachs
~UgUEL L. Tordado T, Andrea CoNil & TUra B Phys. Rev. D 103, 083518 - Published 21 April 2021

Journal of High Energy Physics 2020, Article number: 36 (2020) ‘ Cite this article

185 Accesses ‘ 10 Citations |4 Altmetric ‘ Metrics



QUASINORMAL MODES

v QNMs are the modes of "energy dissipation" of a perturbed field or object.
An example: Let us perturb a wine glass with a knife.
The glass begins to ring, it rings with a superposition of "its natural frequencies".

Here, we mean by the natural frequency is the mode of its sonic energy dissipation. These modes are
called "Normal Modes".

If the amplitude of oscillation decay in time, we call these modes Quasinormal.
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v/ The amplitude of the oscillation can be approximated by

¥ ~ ™' and setting w = wg + iw;
~ e ! cos(wpt)

Here w is referred to as the QNM frequency.

a) wp, is the frequency of the oscillatory mode.

b) w; is the frequency of the exponential mode.

\/ Itis believed that QNM of a BH is a characteristic wave of it and would lead to the direct identification
of the BH existence through gravitational wave observation. (If it will be realized in the future.)

v/ Today, there are many well known studies which show that the surrounding geometry of a BH
experiences QNMs under perturbations.

S. Chandrasekhar and S.L. Detweiler, “The Quasinormal Modes of the Schwarzschild Black Hole", Proc. R. Soc. London, (1975).
K.D. Kokkotas and B. Schmidt, "Quasinormal Modes of Stars and Black Holes", Living Rev. Relativity, (1999).

Main Boundary Conditions: The quasinormal modes are
defined as the modes with the purely ingoing wave at the
horizon and the purely outgoing wave at the spatial infinity.




Charged Dirac equation in BIDBH geometry 13 ‘

In the NP formalism , massless Dirac equations with charge coupling are given as follows
D+igl Aj+e—p| Fi+ [0+ignW Aj+ 7 —a] Fp =

[(5+z’qmj.Aj +H—T]f1+[A+iqnj.Aj +,u—7: Fa2 =0,

[D +iql' Aj + & — 5] G2 — [0 +igm’ A; + T — @] G1 =0,

[A+iqnjAj +H—7] G — [E—I-iqmj/lj +B—?] Gs =0,

where ¢ is the charge of the fermion and A; represents the jt" component of the vector potential

['he wave functions Fy, F5, 61’1, 61’2 represent the Dirac spinors

a, B3,7,€, 1, p,7 are the spin (Ricci rotation) coefficients. The directional derivatives for NP tetrads are
defined as
D= lej, A= njVj, )= mjVj, 5= ﬁljvj',



Scientists Have Finally Discovered
Massless Particles, and They Could
Revolutionise Electronics

23 July 2015 By FIONA MACDONALD

Science

se papers

After 85 vyears of searching,
researchers have confirmed the
existence of a massless particle
called the Weyl fermion for the first
time ever. With the unique ability
to behave as both matier and
antfi-matter inside a crystal, this

“'strange particle can create

HOME > SCIENCE > VOL. 349 NO.6248 > DISCOVERY OF A WEYL FERMION SEMIMETAL AND TOPOLOGICAL FERMI ARCS electro ns th qt hqve no mqss
[ ]

RESEARCH ARTICLE

f ¥ in @ % =

Discovery of a Weyl fermion semimetal and topological
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Weyl physics emerges in the laboratory
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f1(r) Ay (6) e"FtHme)
0 (?") A2 (9) ei(kt—l—-}mp)

fo (?) As (9) ct(kt+me)

g2 (1) Ay (6) gFtHme)




— — t0.
sin @ 2 p) coLo;

It — 8, — m | (1

— to,
sin 6 2—|—p) oMY

where p = qQ.



Further, choosing

f1 =92, fo =01, A1 = Az, A3 = Ay,

The radial master equations | the angular master equations

]. 2 ]. m ‘ 7m 7m
*:‘\/(”z) e (Real: (z+2) zp), (80 — = —scot6) (,Y"(8) =~/ =) U+ 5+ 1)1, ¥ (9).

(0(, + .'”0 + scot 9) GY™©0) =/ +s)(—s+1),_,Y;™(6).

Sin

Since | and s both must be integers or half-integers, we impose the "Dirac qutization condition”




Two decoupled radial equations, which correspond to 1-dimensional Schrodinger equation
or the so-called Zerilli equation

Pjrsrs + K°P; =V, P, j=1,2

the effective potentials are given by




The near-horizon and asymptotic limits of the potentials are as follows
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decoupling of G

,  blrg —2r) , i —72 (rg — 2r) k*r? 5 -
h(r)G; — 5 G; + {(1) ik [h(‘r)L = 2R ] h(r) — A }GJ = 0.
1=—g=—1_"TH
rH

-+ Olzl_CF

 [k(-1)T'L+a],



In the near-horizon region: r — ry, r. - —00 = 2z =~ e — 0. By recalling that F'(a,b;c;0) = 1

Only ingoing waves can propagate near the horizon

Gy = Hye ™ = Che™ " F(a, b; c; 2),

—

G1 = Hie®*™ = C12' et F(a, b; G; 2)

spatial infinity (r — oo, 7. — 00 = % —0)

(2)7®

~ ~ o _ " HANDBOOK OF

(3:) Fb,b+1—¢b+1—a;1/2)|, MATHEMATICAL FUNCTIONS
Formulas, ,and Mathematical Tables

) e l&tdbywcl;:naf:smh::w\oltsm

~b
['(e)l'(b— a) ey
I'b)'(c—a)
['(e)['(a — b)
I'a)l'(c — b)

() *F(a,a+1—c;a+1—0b;1/z2)

Gy = Cze_ikr* |:

forwen, wima el W 0 (ko dadel \umitams - e

() °F(b,b+1—c;b+1— a; l/z)] ' e L




r—ryg

Since x = —*, and thus z ~r ~ eT at the infinity, we have

- e { [h?)L ) f»() ~wfe =0

the wave should be purely
outgoing at the spatial
infinity, we set

o~




to have only pure outgoing waves at the spatial infinity (i.e., D3, D4 = 0)

we appeal to the pole structure of the Gamma functions

a=1(—kL+a)=—n,

] he Gamma functions I'(z) have poles at * = —n for n = 0,1,2....
c—b=-—i(kL+a)=—n,

2
1 _ Conclusion
- —i(kL+a) = —n,

@3

G b=1+i(kl—a)=—n. QNM frequencies for G ».

Stable Modes (QNMs) | Unstable Modes

. 2 . 2n+1)2
if A2 > if A2 < (2ntl)

Thus, we have shown that there are two sets of frequencies for G,, of the
fermionic fields in the BIDBH geometry.
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