
Equation (5) can be re-written in terms of the peak 
density, obtaining

Through numerical fitting of core radius and central
density in the presence of self interactions (FIG. 4, 5)
we semi-analytically derive the following
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I. Chavanis’ Frequency Analysis

By looking at Chavanis, P. H. (2011), we can follow
the necessary steps to arrive at an equation for the
oscillation frequency of a fuzzy dark matter soliton
1. Take a Gaussian profile ansatz with radius !" and

mass M
2. Calculate the kinetic energy (#$ ), gravitational

energy (W) and moment of inertia (I) integrals

3. Enforce the virial condition to reshape the
Gaussian and define a new !" which obeys the
virial condition

4. Perturb the radius and assign the time
dependence to the perturbation
– !"(t) → !"+ ɛ(t), and keep linear terms

5. Evaluate the oscillatory equation that emerges for
ω from the total energy, arriving at
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[1] Chavanis P H 2011 Physical Review D - Particles, Fields, Gravitation and Cosmology 84 1–27

[2] Schive H Y, Chiueh T and Broadhurst T 2014 Nature Physics 10 496–9

III. The Soliton Density Profile

Schive H Y, et al. [2] finds an empirically fit formula
for the density profile of a FDM soliton of mass M
and radius !", defined as the radius at which the
density drops to half the peak value:

Here, B = 0.091. We now calculate the relevant
energy integrals without enforcing virialisation,
and find solutions in the same form as the
Gaussian approach. However, we do find that the
constants have changed:
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II. Numerical Simulation

The underlying equations for a FDM system are the
Gross-Pitaevskii equations (GPPE). Naturally, in the
absence of self interactions, this reduces to
the Schrodinger-Poisson system of equations.

We solve these equations with two separate
methods. We use a 3D split-step Fourier method to
generate a 3D simulation of the system. This is,
however, computationally expensive. We also
produce a 1D radial simulation of the code,
where we assume spherical symmetry.

The system is propagated in imaginary time to
generate the ground state solution to the GPPE,
which is indeed the soliton solution. These are the
cores found within the centre of FDM dark matter
halos. We then apply a small perturbation and
propagate the system in real time to assess the
oscillation properties and frequency.
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When considering a dark matter constituent with mass in the range , = 10I&& − 10I&A eV, one obtains a
large cosmological system which is well defined by a single coherent wavefunction with de Broglie
wavelength of order kpc – fuzzy dark matter (FDM). On large scales, FDM replicates the cosmic web structure
of cold dark matter (CDM), whilst maintaining significant benefits on galactic scales. Increased attention is
motivated by the inherent properties which remedy some issues with CDM - most notably the cusp-core
problem; the balance between the quantum pressure and gravitation within a FDM system naturally forms a
core at the heart of the halos. Scalar field oscillations are observed in numerical simulations and have been
found to send out density waves into the surrounding halo. Attempts have been made to derive an analytical
expression for the frequency [1]. We repeat such an analysis with an alternate ansatz, and find agreement,
whilst also obtaining a more general expression which allows for the presence of boson self-interactions.
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FIG. 1: The soliton core oscillation frequency for varied
boson mass. Virialised Gausisan – Eq. (4) using Chavanis’
constants. Empirical profile – Eq. (4) using the analytically
calculated constants using Eq. (5) as the ansatz. Numerical
solutions – Eq. (4) using the constant values for a numerically
generated soliton.
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FIG. 2: As adjacent, but for varied soliton core mass, and
constant boson mass of 10I&T eV.

relationship for the oscillation frequency in the self
interacting limit:

This expression reduces to Eq. (7) in the limit of no
self-interactions (g = 0). Eq. (8) thus accurately
depicts the oscillation frequency of soliton cores in
the presence of self interactions, which can be seen
in the adjacent figures.
To conclude, we have found a new, generalized
formula for the oscillation frequency of FDM soliton
cores, which accounts for the boson mass, soliton
mass and now also the repulsive self-interaction
strength. This will allow us to open up the parameter
space for allowed boson masses based on oscillation
frequency derived constraints [3].

FIG. 3: A soliton density profile from simulation, compared
to the fitting formula.
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FIG. 5: The soliton
core radius
obtained from
numerical
simulation, with
respect to the
repulsive self-
interaction
strength, plotted
with the fitting
formula.
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FIG. 4: The soliton 
core central density 
obtained from 
numerical simulation, 
with respect to the 
repulsive self-
interaction strength, 
plotted alongside the 
fitting formula.

FIG. 6: The soliton core oscillation frequency with
respect to the repulsive self-interaction strength,
plotted alongside the semi-analytical predictive formula
in Eq. (8).
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IV. New Findings & Conclusion
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