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Background and approach

Multifield cosmological models (with at least two real scalar fields) are
of increasing interest in theoretical physics because:

it is more natural to produce multi-field models in fundamental theories of
gravity (such as string theory) than to produce one-field models,

the ‘swampland’ conjecture (induced by compatibility with quantum
gravity) is very restrictive for a single scalar field.

In our previous work we initiated a geometric study of the classical
dynamics of multifield cosmological models with arbitrary scalar manifold.
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Multifield cosmological models – a mathematical definition

Definition

An n-dimensional scalar triple is an ordered system (M,G,V), where:

(M,G) is a connected and borderless Riemannian n-dimensional manifold
(called scalar manifold)

V ∈ C∞(M,R) is a smooth function (called scalar potential).

Assumptions

1 (M,G) is complete (to ensure conservation of energy)

2 V > 0 on M (to avoid certain technical problems)

Each scalar triple defines a cosmological model:

SM,G,V [g , ϕ] =

∫
R4

d4x
√
|g |
[
M2

2
R(g)− 1

2
Trgϕ

∗(G)− V ◦ ϕ
]

M is the reduced Planck mass
g is the metric on the space-time R4

ϕ : R4 −→M
V :M−→ R
Trgϕ

∗(G) = gµνGij∂µϕi∂νϕ
j , µ, ν ∈ {0, .., 3} , i , j ∈ {1, ..., n}
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FLRW universe and cosmological equations

Take metric g to describe a simply-connected and spatially flat FLRW universe:

ds2
g := −dt2 + a2(t)d~x2 (x0 = t , ~x = (x1, x2, x3) , a(t) > 0 ∀t)

and ϕ = (ϕi )i=1,n to depend only on the cosmological time t, i.e. ϕ = ϕ(t).

When the Hubble parameter (defined as H(t)
def.
= ȧ(t)

a(t)
) is strictly positive

(H > 0), then the e.o.m. are equivalent with the cosmological equation:

∇t ϕ̇(t) +
1

M0

[
||ϕ̇(t)||2G + 2V(ϕ(t))

]1/2

ϕ̇(t) + (gradGV)(ϕ(t)) = 0 , (1)

plus the condition:

H(t) =
1

3M0

[
||ϕ̇(t)||2G + 2V(ϕ(t))

]1/2

where M0 = M
√

2
3

and locally:

∇t ϕ̇
i = ϕ̈i + Γi

jk ϕ̇
j ϕ̇k , ||ϕ̇(t)||2G = Gij ϕ̇i ϕ̇j

gradGV = (gradGV)i∂i = G ij(∂jV)∂i , ∂i :=
∂

∂ϕi
. (2)
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The RG similarity group

Multifield cosmological models admit a group of similarities, which relate
cosmological curves for models with the same M but different M0, G, V.

Definition

Let ε > 0. The ε-scale transform of a curve ϕ : I →M is the curve
ϕε : Iε →M defined through:

ϕε(t)
def.
= ϕ(t/ε) ∀t ∈ Iε , Iε

def.
= εI = {εt|t ∈ I} .

The cosmological equation is invariant under:

Scale similarities:

ϕ→ ϕε , V → Vε
def.
= V/ε2 (ε > 0) .

Parameter homotheties:

G → λG , V → λV , M0 → λ1/2M0 (λ > 0)

Definition

The RG similarity is the composition of scale similarity at parameter ε with
parameter homothety at parameter λ = ε2:

ϕ→ ϕε , M0 → εM0 , G → ε2G , V → Vε (ε > 0) .
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The IR expansion

A curve ϕ : I →M satisfies the cosmological equation of the model (M,G,V)
iff ϕε satisfies the ε-rescaled cosmological equation:

∇t ϕ̇ε(t) +
1

M0

[
||ϕ̇ε(t)||2G + 2Vε(ϕε(t))

]1/2

ϕ̇ε(t) + (gradGVε)(ϕε(t)) = 0 ,

where Vε
def.
= V/ε2.

Remark

The IR limit corresponds to slow variation of cosmological curves (low
frequency modes of ϕ(t)). Equivalently, the limit ε→ 0 amounts to Vε →∞.

The IR expansion. When ε� 1, we expand ϕε in positive powers of ε or
equivallently expand ϕ(t) in powers of 1√

2V .

To first order in the IR expansion, ϕ is approximated by the solution ϕIR of:

dϕIR(t)

dt
+ (gradGV )(ϕIR(t)) = 0 (3)

where V
def.
= M0

√
2V is the classical effective scalar potential of the model.
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The case of two-field models

When n = 2 we denote M = Σ.

Theorem (Poincaré)

The Weyl equivalence class of any Riemannian metric G on a borderless
connected surface Σ contains a unique complete metric G , called the
uniformizing metric of G, of constant Gaussian curvature K = −1, 0 or +1.

The case K = −1 is generic: any metric G defined on Σ is hyperbolizable
and its uniformizing metric G is called the hyperbolization of G.

The cases K = +1 and K = 0 occur only for 7 topologies, as follows:
When K = +1, the surface Σ must be diffeomorphic with the 2-sphere S2

or with the real projective plane RP2 ' S2/Z2.

When K = 0, the surface Σ must be diffeomorphic with the 2-torus T2, the
Klein bottle K2 = RP2 × RP2 ' T2/Z2, the open annulus A2, the open
Möbius strip M2 ' A2/Z2 or with the plane R2.
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Hyperbolizable two-field models

Cosmological equation:

∇t ϕ̇(t) +
1

M0

[
||ϕ̇(t)||2G + 2V(ϕ(t))

]1/2

ϕ̇(t) + (gradGV)(ϕ(t)) = 0 , (4)

Proposition

The IR behavior of the cosmological flow of a two-field model with scalar triple
(Σ,G,V) and rescaled Planck mass M0 is described by the gradient flow of the
scalar triple (Σ,G ,V ), where G is the uniformizing metric of G and

V
def.
= M0

√
2V is the classical effective scalar potential of the model:

ϕ̇IR(t) + (gradGV )(ϕIR(t)) = 0 . (5)

We will study the IR behaviour near critical points of V and near the ends of Σ.
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Types of ends of a topologycal surface

There are 4 hyperbolic types of ends: cusp, plane, horn and funnel ends.

Figure: The elementary hyperbolic surfaces and type of their ends. (Σ̂ = S2)

Reminder

The ends of a topological space are, roughly speaking, the connected
components of the ”ideal boundary” of the space. Each end represents a
topologically distinct way to move to infinity within the space. Adding a point
at each end yields the end (or Freudenthal) compactification of the original
space, so the set of ends is defined as:

Ends(Σ)
def.
= Σ̂ \ Σ ⇐⇒ Σ̂ = Σ t Ends(Σ) .

Calin Lazaroiu Infrared behavior of two-field cosmological models 9/23



”Tame” hyperbolizable two-field models

Definition

A hyperbolizable two-dimensional scalar triple (Σ,G,V) is called “tame” if it
satisfies the following conditions:

1 Σ is oriented and topologically finite. This implies that Σ has finite genus
and finite number of ends and that its end compactification Σ̂ is a
compact smooth surface.

2 The scalar potential V is globally well-behaved, i.e. V admits a smooth
extension V̂ to Σ̂. We require that V̂ > 0 on Σ̂, which means that the
limit of V at each end of Σ is a strictly positive number.

3 The extended potential V̂ is a Morse function on Σ̂ (in particular, V is a
Morse function on Σ).

A two-field cosmological model with tame scalar triple is called “tame”.

To determine the IR behaviour of hyperbolizable ”tame” two-field models we
will study the gradient flow near interior critical points and near all ends.
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Interior critical points and critical ends ends

Since Σ is topologically finite, then the set of ends Ends(Σ) is finite.

The condition that V̂ is Morse implies that the set of its critical points is finite:

CritV̂ def.
= {c ∈ Σ̂|(dV̂)(c) = 0} = CritV̂

The critical points of V coincide with the interior critical points of V̂ (and V̂):

CritV = CritV = Σ ∩ CritV̂ = Σ ∩ CritV̂ .

We have the disjoint union decomposition:

CritV̂ = CritV t Crit∞V .

where:

Crit∞V = Crit∞V
def.
= Ends(Σ) ∩ CritV̂ = Ends(Σ) ∩ CritV̂

is the set of critical ends.
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The hyperbolic metric G in the vicinity of an end

Any end e of Σ admits an open neighborhood Ue ⊂ Σ̂ diffeomorphic with a
disk such that there exist semigeodesic polar coordinates (r , θ) ∈ R>0 × S1

defined on U̇e
def.
= Ue \ {e} ⊂ Σ in which the metric G has the canonical form:

ds2
G |U̇e

= dr 2 + fe(r)dθ2 ,

fe(r) =


sinh2(r) if e = plane end

1
(2π)2 e

2r if e = horn end
`2

(2π)2 cosh2(r) if e = funnel end of circumference ` > 0
1

(2π)2 e
−2r if e = cusp end

.

The end e corresponds to r →∞.
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The hyperbolic metric G in the vicinity of an end

Setting ω
def.
= 1

r
, we have the metric in canonical polar coordinates (ω, θ):

ds2
G |U̇e

=
dω2

ω4
+ fe(1/ω)dθ2 ,

fe(1/ω) = c̃ee
2εe
ω

[
1 + O

(
e−

2
ω

)]
for ω → 0 ,

c̃e =


1
4

if e = plane end
1

(2π)2 if e = horn end
`2

(4π)2 if e = funnel end of circumference ` > 0
1

(2π)2 if e = cusp end

εe =

{
+1 if e = flaring (i.e. plane, horn or funnel) end
−1 if e = cusp end

O
(
e−

2
ω

)
≡ 0 when e is a cusp or horn end.
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Principal canonical coordinates centered at an end

At a critical end e

The Taylor expansion of V̂e in principal Cartesian coordinates (x , y) and
respectively in polar coordinates (ω, θ):

V̂e(x , y) = V̂ (e) +
1

2

[
λ1(e)x2 +λ2(e)y 2

]
+ O((x2 + y 2)

3
2 )

V̂e(ω, θ) = V̂ (e) +
1

2
ω2
[
λ1(e) cos2 θ+λ2(e) sin2 θ

]
+ O(ω3) ,

where ω =
√

x2 + y 2, θ = arg(x + iy) and the real numbers λ1(e) and λ2(e)

are the principal values of the Hessian of V̂ (e).

When λ1 and λ2 do not both vanish, it is convenient to define:

Definition

The critical modulus of (Σ,G ,V ) at the critical end e is the ratio:

βe
def.
=

λ1(e)

λ2(e)
∈ [−1, 1] \ {0} ,

where λ1(e) and λ2(e) are the principal values of (Σ,G ,V ) at e.

The characteristic signs of (Σ,G ,V ) at e:

εi (e)
def.
= sign(λi (e)) ∈ {−1, 1} (i = 1, 2)
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The IR behaviour near critical plane ends

In canonical coordinates (ω, θ), for θ 6∈ {0, π
2
, π, 3π

2
}, the unoriented gradient

flow orbits around the ends are given in the implicit form:

1

4
[λ1(e)−λ2(e)] Γ2

(
2εe

ω

)
= A+ c̃e [λ1(e) log | sin θ| − λ2(e) log | cos θ| ] , (6)

where Γ2 is the lower incomplete Gamma function of order 2 and A is an
integration constant.

We graphically compare the unoriented gradient flow orbits to the IR optimal
cosmological curves, which are the numerically computed solutions ϕ(t) of the
cosmological equation with ϕ̇(0) = −(gradGV )ϕ(0). We take M0 = 1 and
make certain choices for β.
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The IR behaviour near critical plane ends
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Figure: Gradient flow orbits (brown) over potential lines (green) for critical plane end.
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Figure: IR optimal cosmological curves (brown) over potential lines (green). The dots are initial points ϕ(0).
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The IR behaviour near critical horn ends
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Figure: Critical horn end.
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Figure: Critical horn end. The dots are initial points ϕ(0).
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The IR behaviour near critical funnel ends
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Figure: Critical funnel end.

-0.3 -0.2 -0.1 0.0 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

x

y

() For βe = −0.5.

-0.4 -0.2 0.0 0.2 0.4

-0.4

-0.2

0.0

0.2

0.4

x

y

() For βe = 0.5.

Figure: Critical funnel end. The dots are initial points ϕ(0).
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The IR behaviour near critical cusp ends
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Figure: Critical cusp end.
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Figure: Critical cusp end. The dots are initial points ϕ(0).
Note: One must consider higher order corrections in the IR expansion to get better aproximation also for the cusp.
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The IR behavior near an interior critical point

Let c be an interior critical point and (x , y) be principal Cartesian canonical
coordinates centered at c. We have the metric:

ds2
G =

4

(1− ω2)2
[dω2 + ω2dθ2]

and:

V (ω, θ) = V (c) +
1

2
ω2
[
λ1(c) cos2 θ + λ2(c) sin2 θ

]
+ O(ω3) .

where ω
def.
=
√

x2 + y 2 and θ
def.
= arg(x + iy).

The critical modulus βc and characteristic signs ε1(c) and ε2(c) of (Σ,G ,V ) at
c are defined through:

βc
def.
=

λ1(c)

λ2(c)
∈ [−1, 1] \ {0} , εi (c)

def.
= sign(λi (c)) (i = 1, 2) .

The gradient flow equation gives the general solution: ω = C | sin(θ)|
βc

1−βc

| cos(θ)|
1

1−βc

, for

θ 6∈ {0, π
2
, π, 3π

2
}, where C is a positive integration constant.
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The IR behavior near an interior critical point
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The dots are initial points ϕ(0).
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Conclusions

We studied the first order IR behavior of ”tame” hyperbolizable two-field
cosmological models by analyzing the asymptotic form of the gradient flow
orbits of the classical effective scalar potential V with respect to the
uniformizing metric G near all interior critical points and ends of Σ.

We showed that the IR behaviour of ”tame” hyperbolizable two field
cosmological models is characterized by a finite set of parameters
associated to their ends and interior critical points.

Comparing with numerical computations, we found that the first order IR
approximation is already quite good for all interior critical points and all
ends except for cusps, for which one must consider higher order corrections
in the IR expansion in order to obtain a good approximation.

Our results characterize the IR universality classes of all tame
hyperbolizable two-field models in terms of geometric data extracted from
the asymptotic behavior of the effective scalar potential and uniformizing
metric.
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