Hidden Symmetries, Rapid Turns and Cosmic Acceleration

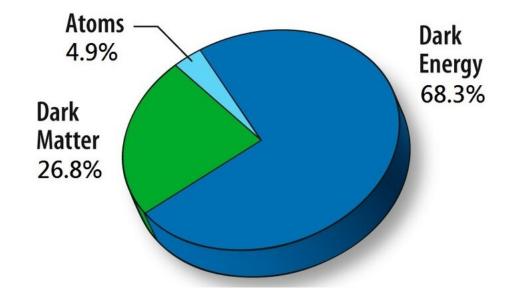
Lilia Anguelova INRNE, Bulgarian Academy of Sciences

arXiv:2012.03705 [hep-th], arXiv:2111.12136 [hep-th] (with J. Dumancic, R. Gass, L.C.R. Wijewardhana)

Motivation

Composition of the Universe today:

(from CMB observations and other sources)



Nature of Dark Energy and Dark Matter?:

Background solutions in multifield cosmology, whose field-space trajectories exhibit rapid turns

Primordial Black Holes (PBHs):

• Contribute to Dark Matter:

Sufficient abundance of PBHs: natural candidate for DM (Depending on the model: from a fraction to all of DM...)

• Formed in Early Universe:

Large enough fluctuations during cosmological inflation can seed PBHs

• Growing observational evidence for PBHs from BH mergers: LIGO/Virgo Collaboration: (first detection: LIGO in 2015) Theoretical understanding of PBH-generation:

• Single-field inflationary models:

More conventional, but PBH-formation is a challenge...

• Multi-field cosmological inflation:

- Motivated by quantum gravity

(string compact.: even number of scalars; swampland conjectures...)

- Leads to new phenomena

Goal:

PBH-generation from certain class of two-field models (due to solutions of the EoM, which exhibit sharp turns in field space)

Two-field Cosmological Models

Action:

$$\begin{split} S &= \int d^4x \, \sqrt{-\det g} \left[\frac{R}{2} - \frac{1}{2} G_{IJ}(\phi) \, g^{\mu\nu} \, \partial_\mu \phi^I \, \partial_\nu \phi^J - V(\phi) \right] \,, \\ g_{\mu\nu}(x) \text{ - spacetime metric }, \qquad \mu, \nu = 0, ..., 3 \\ G_{IJ}(\phi) \text{ - field space metric }, \qquad I, J = 1, 2 \end{split}$$

Standard background Ansatze:

$$ds_g^2=-dt^2+a(t)^2d\vec{x}^2~$$
 , $~\phi^I=\phi_0^I(t)~$,
$$H(t)\equiv \frac{\dot{a}(t)}{a(t)}~$$
 - Hubble parameter

Conceptual note:

In single-field models potential $V(\phi)$ plays key role: Always: field redefinition \rightarrow canonical kinetic term (Can transfer complexity to the potential)

In multi-field models:

Cannot redefine away the curvature of G_{IJ} !

(I.e., kinetic term becomes important !)

 \Rightarrow Can have: - Genuine two (or multi-) field trajectories even when $\partial_{\phi^I} V = 0$ for some I

- New phenomena due to non-geodesic motion in field space

Exact solutions with hidden symmetry

Exact solutions in multifield case: difficult to find...

L.A., E.M.Babalic, C.Lazaroiu, arXiv:1809.10563 [hep-th] : Obtained many by using Noether symmetry method

Imposing Noether symmetry is a powerful technical tool:

- can restrict:
 - form of potential V (expected)
 - value of Gaussian curvature K_G (unexpected!)

(hence: may help for embedding in fundamental theory)

 can lead to simplified EoMs and thus facilitate finding exact solutions (as opposed to numerical ones)

Noether symmetry:

Substituting ansatz $\ ds^2 = -dt^2 + a(t)^2 d\vec{x}^2$, $\phi^I = \phi^I_0(t)$:

$$\mathcal{L} = -3a\dot{a}^2 + a^3 \left[\frac{1}{2} G_{IJ} \dot{\phi}_0^I \dot{\phi}_0^J - V(\phi_0) \right]$$

 \rightarrow classical mechanical action for $\{a, \phi_0^I\}$ ds.o.f.

(Euler-L. eqs of $\mathcal{L} \equiv$ original EoMs, when imposing Hamiltonian constraint)

Consider transformation:

$$q^{\hat{I}} \to Q^{\hat{I}}(q)$$
 , where $q^{\hat{I}} \equiv \{a, \phi_0^I\}\,$ - gen. coord. on ${\cal M}$

 \rightarrow induces transf. on tangent bundle $T\mathcal{M}$, gen. by vec. X(with coord. $\{q^{\hat{I}}, \dot{q}^{\hat{I}}\}$)

Symmetry condition: $L_X(\mathcal{L}) = 0$

Hidden symmetry: (arXiv:1809.10563 [hep-th], arXiv:1905.01611 [hep-th])

 $L_X(\mathcal{L}) = 0 \implies \text{coupled system of PDEs}$

 \rightarrow determines $X(a, \phi_0)$ and $V(\phi_0)$

• visible symmetry: acts only on $\{\phi_0^I\}$

• hidden symmetry: acts also on a (mixes a and $\{\phi_0^I\}$!)

Consider rot.-invariant metric G_{IJ} on \mathcal{M}_0 (with coord. $\{\phi_0^I\}$):

$$ds_G^2 = d\varphi^2 + f(\varphi)d\theta^2$$
 (recall: $I, J = 1, 2$)

Showed: hidden symmetry requires hyperbolic \mathcal{M}_0 !

Found: many classes of exact solutions for hyperbolic \mathcal{M}_0

Class of exact solutions: (arXiv:1809.10563 [hep-th])

Take G_{IJ} - metric on Poincaré disk & impose hidden symmetry :

$$\Rightarrow f(\varphi) = \frac{1}{q^2} \sinh^2(q\,\varphi) , \quad V(\varphi,\theta) = V_0 \cosh^2(q\,\varphi) ,$$
$$q = \sqrt{\frac{3}{8}} , \quad V_0 > 0$$

Poincaré disk metric: (α -attractor notation)

$$ds_D^2 = 6\alpha \frac{dz d\bar{z}}{(1 - z\bar{z})^2} \quad ,$$

$$z = \rho e^{i\theta}$$
, $\rho \in [0,1)$,

 α – arbitrary parameter ; hid. sym.: $\alpha = \frac{16}{9}$

$$\rho = \tanh\left(\frac{\varphi}{\sqrt{6\alpha}}\right) \quad \Rightarrow \quad ds_D^2 = d\varphi^2 + f(\varphi)d\theta^2$$

Primordial Black Holes

PBH generation: induced by large perturbations during inflation

Characteristics of an inflationary trajectory:

Background trajectory $(\phi_0^1(t), \phi_0^2(t))$ in field space:

- Tangent and normal vectors: T^{I} , N_{J} (I, J = 1, 2)

– Turning rate:
$$\Omega = -N_I D_t T^I$$
 ($D_t T^I \equiv \dot{\phi}_0^J \nabla_J T^I$)

– Slow-roll parameters: $arepsilon=-rac{\dot{H}}{H^2}$, $\eta_{\parallel}=-rac{\ddot{H}}{2H\dot{H}}$, $\eta_{\perp}=rac{\Omega}{H}$

Power spectrum of curvature perturbation:

$$\mathcal{P}_{\zeta} \sim \mathcal{P}_0 e^{c |\eta_{\perp}|}$$
 , $c = const > 0$

For PBH generation, need δt with: $\mathcal{P}_{\zeta}/\mathcal{P}_0 \sim 10^7$ (Slow roll: ε , $|\eta_{\parallel}| \ll 1$; Our interest: $\eta_{\perp}^2 \gg 1$) PBHs from exact solutions with hidden symmetry: (L.A., arXiv:2012.03705 [hep-th])

Consider class of solutions on Poincaré disk (mentioned earlier):

 \bullet Proved that $\rho(t)$ can have at most two local extrema

 \rightarrow Shape of trajectory: greatly restricted;

In particular: a single rapid turn (single peak of $|\Omega|$)

- Showed presence of brief tachyonic instability
 - effective entropic mass: $M^2_{(\delta\phi)_{\perp}} = N^I N^J V_{;IJ} \Omega^2$

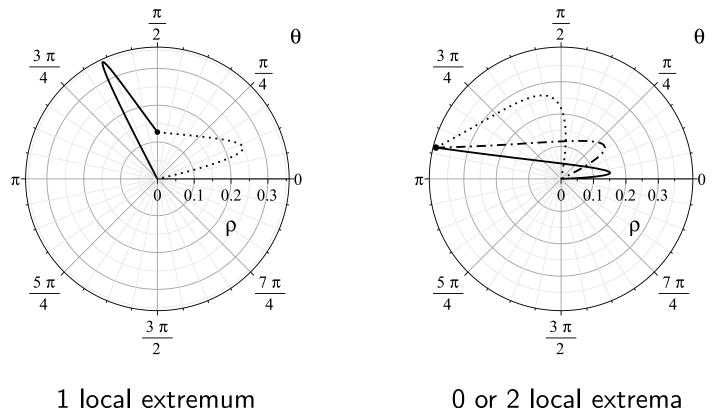
– tachyonic instability: $M^2_{(\delta\phi)_{\perp}\equiv s} < 0 \iff \eta^2_{\perp} >> 1$

 \rightarrow Period δt with $M_s^2 < 0 \Rightarrow$ desired enhancement of \mathcal{P}_{ζ} !

Examples of exact solutions:

Illustration of all possible types of trajectories on Poincaré disk [recall: radial variable $\rho \in [0, 1)$]

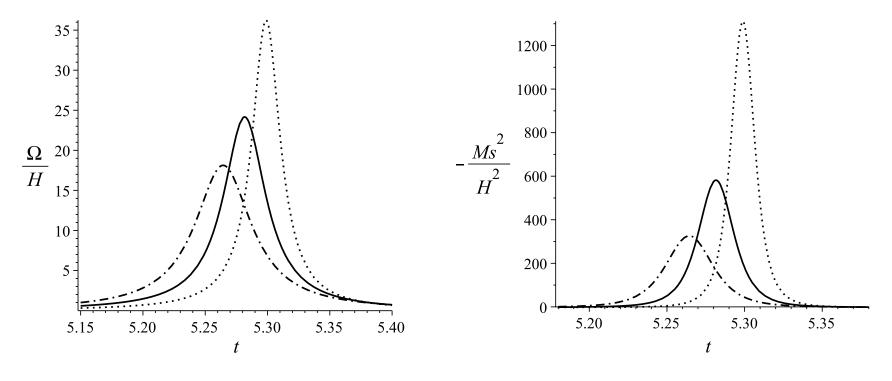
New result: $\rho(t)$ can have 0, 1 or 2 local extrema



1 local extremum

Examples of exact solutions:

Illustration of behavior of $\eta_{\perp}(t) = \frac{\Omega}{H}$ and entropic mass $M_s^2(t)$ New result: transient tachyonic instability

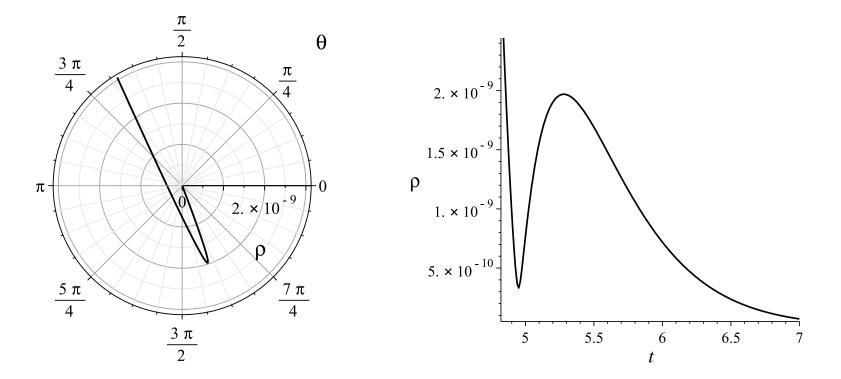


Three examples with number of e-folds $N = \int H dt$ at peak: ~ 11 (PBH generation : $|\eta_{\perp}|_{peak} \sim 25$)

Examples of exact solutions:

Illustration of a typical slow-roll trajectory $(\rho(t), \theta(t))$

New result: $\varepsilon \ll 1$ (slow roll) occurs for $\rho \ll 1$ (equiv. $\varphi \ll 1$)



For comparison: In standard α -attractors slow roll occurs near boundary ($\varphi \to \infty$) of Poincaré disk \rightarrow super-super-Planckian excursions in field space

Modified solutions:

Obtained so far: small-field inflation and rapid turn (Great for PBH-generation!)

BUT: Behavior of η_{\parallel} -param. - problematic phenomenologically (On solutions of EoMs: $\eta_{\parallel} = -\ddot{H}/(2H\dot{H})$ - Hubble η -param.)

 $\rightarrow\,$ Need to modify hidden-symmetry solutions

New result: Modified solutions with additional parameter; for certain param. value: recover hidden symmetry; in general: do not respect the symmetry.

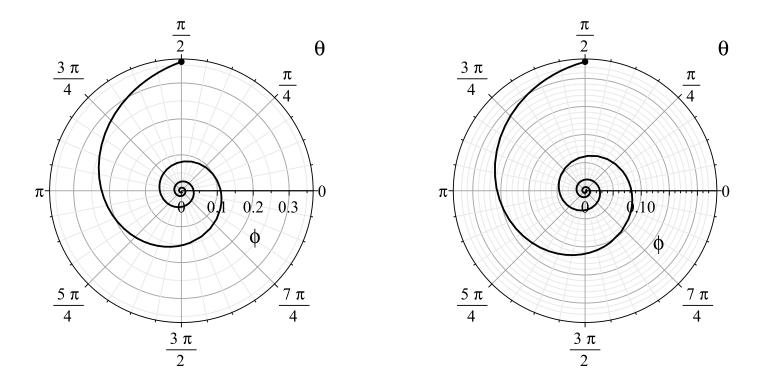
> Mod sol.: - Preserve tachyonic inst. and small-field infl. - Phase transition: ultra-slow-roll \rightarrow slow-roll

Dark Energy: exact solutions

Four-param. family of solutions with $\dot{\theta} = const$:

(L.A., J.Dumancic, R.Gass, L.C.R.Wijewardhana, arXiv:2111.12136 [hep-th])

Obtained by taking Poincaré disk and $V = V_{hid.sym.} + const$



Two examples of trajectories $(\varphi(t), \theta(t))$ of the exact solutions

Summary

Found:

- Class of exact two-field inflationary solutions with hidden symmetry leads to PBH generation [trajectory: brief sharp turn]
- Modified solutions with improved Hubble η -parameter [Transition between ultra-slow-roll and slow-roll phases]
- Exact solutions describing dark energy [turn rate: always large]

Open questions:

- More general hidden symmetries \rightarrow PBH-generation ?...
- Transitions between other pairs of inflationary phases ?...
- Rapid turns in SUGRA, string compactifications ?...

Thank you!