ON SOME ANALYTICAL SOLUTIONS OF INFLATIONARY MODELS WITH DBI TACHYON FIELD

Marko Stojanović

University of Niš, Serbia

In collaboration with: G. Djordjević,
D. D. Dimitrijević and M. Milošević

11th International Conference of the Balkan Physical Union 28 August - 1 September 2022, Belgrade, Serbia

Content

- Introduction
- Dynamics of tachyon field in cosmology
- Analytical solutions of inflationary models with DBI tachyon field
- Results and ideas for further research
- Final remarks

Introduction

- The inflation theory proposes a period of extremely rapid (exponential) expansion of the universe during the an early stage of evolution of the universe
- The inflation theory predict that during inflation (it takes about $10^{-34} \mathrm{~s}$) radius of the universe increased, at least e^{60} times
- Although inflationary cosmology has successfully complemented the Standard Model, the process of inflation, in particular its origin, is still largely unknown
- Over the past 40 years numerious models of inflationary expansion of the universe have been proposed
- The simplest model of inflation is based on the existence of a scalar field, which is called inflation, which drive inflation
- The most important way to test inflationary cosmological model to compare the computed and measured values of the observation parameters
- Is it possible to find analytical solution of dynamical equation without slow-roll approximation

Introduction

- Spatially flat FLRW universe:

$$
\begin{equation*}
d s^{2}=g^{\mu \nu} d x_{\mu} d x_{\nu}=d t^{2}-a^{2}(t)\left(\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega^{2}\right) \tag{1}
\end{equation*}
$$

$$
a(t) \text { - scale factor, } k=-1,0,+1-\text { the spatial curvature parameter }
$$

- Hubble expansion rate

$$
\begin{equation*}
H(t)=\frac{\dot{a}}{a}, \quad \dot{a}=\frac{d a}{d t} \tag{2}
\end{equation*}
$$

Einstein equations

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=\frac{1}{M_{\mathrm{Pl}}^{2}} T_{\mu \nu}, \quad M_{\mathrm{Pl}}=(8 \pi G)^{-1 / 2} \tag{3}
\end{equation*}
$$

- The energy-momentum tensor of a perfect fluid

$$
\begin{equation*}
T_{\mu \nu}=(p+\rho) u_{\mu} u_{\nu}+p g_{\mu \nu} \tag{4}
\end{equation*}
$$

u_{μ} - four-velocity of the fluid

- Friedman equations:

$$
\begin{align*}
H^{2} & =\frac{1}{3 M_{\mathrm{Pl}}^{2}} \rho \tag{5}\\
\dot{H} & =-\frac{1}{2 M_{\mathrm{Pl}}^{2}}(\rho+p) \tag{6}
\end{align*}
$$

p - pressure
ρ - energy density

- The energy conservation equation $\dot{\rho}+3 H(p+\rho)=0$

Dynamics of tachyon field in cosmology

- Traditionally, the word tachyon was used to describe a hypothetical particle which propagates faster than light
- In modern physics this meaning is changed: The effective tachyonic field theory was proposed by A. Sen
- String theory - states of quantum fields with imaginary mass
- Ii was realised that the imaginary mass creates instability and tachyons spontaneously decay - tachyon condensation
- Tachyon matter in the holographic braneworld is described by the DBI (Dirac-Born-Infeld) Lagrangian:

$$
\begin{equation*}
\mathcal{L}=-V(\theta) \sqrt{1-g^{\mu \nu} \theta_{, \mu} \theta_{, \nu}}, \quad \theta_{, \mu}=\frac{\partial \theta}{\partial x^{\mu}} \tag{7}
\end{equation*}
$$

- Potential $V(\theta)$:

$$
\begin{equation*}
V(0)<\infty, \quad d V / d \theta(\theta>0)<0, \quad V(|\theta| \rightarrow \infty) \rightarrow 0 \tag{8}
\end{equation*}
$$

Examples:

- the exponential tachyon potential

$$
\begin{equation*}
V(\theta)=V_{0} e^{-\omega \theta}, \quad V_{0}=\text { const }, \omega=\text { const } \tag{9}
\end{equation*}
$$

- the inverse cosine hyperbolic tachyon potential

$$
\begin{equation*}
V(\theta)=\frac{V_{0}}{\cosh (\omega \theta)}, \quad V_{0}=\text { const }, \omega=\text { const } \tag{10}
\end{equation*}
$$

Dynamics of tachyon field in cosmology

- The energy-momentum tensor for tachyon matter

$$
\begin{equation*}
T_{\mu \nu}=\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g} \mathcal{L})}{\delta g^{\mu \nu}} \tag{11}
\end{equation*}
$$

- The pressure and energy density $(\theta \equiv \theta(t))$:

$$
\begin{align*}
p & \equiv \mathcal{L}=-V \sqrt{1-\dot{\theta}^{2}} \tag{12}\\
\rho & \equiv \mathcal{H}=\frac{V}{\sqrt{1-\dot{\theta}^{2}}} \tag{13}
\end{align*}
$$

- The energy-momentum conservation gives a second order equation for θ

$$
\begin{equation*}
\frac{\ddot{\theta}}{1-\dot{\theta}^{2}}+3 H \dot{\theta}+(\ln V)^{\prime}=0, \quad(\ln V)^{\prime}=\frac{V_{, \theta}}{V} \tag{14}
\end{equation*}
$$

- The dynamics of tachyon inflation is the almost same as in SSFI

Dynamics of tachyon field in cosmology

- Inflation:

$$
\begin{gather*}
\frac{d}{d t}(a H)^{-1}<0 \quad \Leftrightarrow \quad \ddot{a}>0 \quad \Leftrightarrow \quad p<-\frac{1}{3} \rho \tag{15}\\
\frac{\ddot{a}}{a}=\frac{1}{3 M_{\mathrm{Pl}}^{2}} \frac{V}{\sqrt{1-\dot{\theta}^{2}}}\left(1-\frac{3}{2} \dot{\theta}^{2}\right) \tag{16}
\end{gather*}
$$

The condition for accelerated expansion

$$
\begin{equation*}
\dot{\theta}^{2}<\frac{2}{3} \tag{17}
\end{equation*}
$$

- e-fold number ($N>60$)

$$
\begin{equation*}
N=\int_{a_{\mathrm{i}}}^{a_{\mathrm{f}}} H d t \tag{18}
\end{equation*}
$$

- Potential problems in numerical calculation (initial values, accuracy, ...)

$$
\begin{equation*}
d N=H d t \tag{19}
\end{equation*}
$$

Dynamics of tachyon field in cosmology

- The slow-roll conditions:

$$
\begin{equation*}
\dot{\theta}^{2} \ll 1 \quad \text { and } \quad|\ddot{\theta}| \ll 3 H \dot{\theta} \tag{20}
\end{equation*}
$$

- The equations in slow-roll regime

$$
\begin{equation*}
H^{2} \sim \frac{V}{3 M_{\mathrm{Pl}}^{2}} \quad \dot{\theta} \sim-\frac{(\ln V)^{\prime}}{3 H} \tag{21}
\end{equation*}
$$

- For some type of potential analytical solution for dynamical equation can be find (in slow-roll regime)
- The slow-roll inflation parameters

$$
\begin{gather*}
\dot{\epsilon}_{j}=H \epsilon_{j} \epsilon_{j+1} \tag{22}\\
\epsilon_{0} \equiv \frac{H_{*}}{H}, \quad \epsilon_{j+1} \equiv \frac{d \ln \left|\epsilon_{j}\right|}{d N}, \quad j \geq 0 \tag{23}
\end{gather*}
$$

H_{*} is the Hubble rate at some chosen time

- During inflation both parameters are less then 1 and inflation ends when ϵ_{1} exceeds unity

$$
\begin{equation*}
\epsilon_{1_{\mathrm{f}}}\left(\theta_{\mathrm{f}}\right)=1 \tag{24}
\end{equation*}
$$

Dynamics of tachyon field in cosmology

The inflation parameters:
$n_{\text {s }}$ - the scalar spectral index
r - the tensor-to-scalar ratio

$$
\begin{gather*}
n_{\mathrm{s}}=1-2 \epsilon_{1}-\epsilon_{2}-\left(2 \epsilon_{1}^{2}+\left(2 C+3-\frac{1}{3}\right) \epsilon_{1} \epsilon_{2}+C \epsilon_{2} \epsilon_{3}\right), \tag{25}\\
r=16 \epsilon_{1}\left(1+C \epsilon_{2}-\frac{1}{3} \epsilon_{1}\right) . \tag{26}
\end{gather*}
$$

Constraints from Planck 2018:

$$
\begin{array}{r}
n_{\mathrm{s}}=0.9668 \pm 0.0037 \\
r<0.058 \tag{28}
\end{array}
$$

Analytical solutions

- Friedman equations

$$
\begin{align*}
& H^{2}=\frac{1}{3 M_{\mathrm{Pl}}^{2}} \frac{V}{\sqrt{1-\dot{\theta}^{2}}} \tag{29}\\
& \dot{H}=-\frac{1}{2 M_{\mathrm{Pl}}^{2}} \frac{V \dot{\theta}^{2}}{\sqrt{1-\dot{\theta}^{2}}} \tag{30}
\end{align*}
$$

- Using the expression $H=H(\theta)$, the system of Friedman equations can be written in the form of of the Hamilton-Jacobi type equation

$$
\begin{gather*}
\dot{H}=-\frac{3}{2} H^{2} \dot{\theta}^{2}, \quad \dot{H}<0 \tag{31}\\
\dot{H}=H_{, \theta} \dot{\theta} \tag{32}\\
-\frac{2}{3} d t=\frac{H^{2}}{H_{, \theta}} d \theta \tag{33}
\end{gather*}
$$

Assumption: $H \sim 1 / f(\theta)$

Expected form of solution: $H \sim \frac{1}{\theta^{n}}, \quad H \sim \frac{1}{\sin ^{n} \theta}, \quad H \sim \frac{1}{\cos ^{n} \theta}, \ldots$

Case 1: $H=A \frac{1}{\theta^{2}}$

$$
\begin{gather*}
\theta=e^{\frac{4 t}{3 A}}, \quad H(t)=A e^{-\frac{8 t}{3 A}} \tag{34}\\
\epsilon_{1}=\frac{8}{3 A^{2}} \theta^{2}, \quad \epsilon_{2}=\epsilon_{1} \tag{35}\\
\epsilon_{2}=-\frac{1}{\epsilon_{1}} \frac{d \epsilon_{1}}{d N}, \quad \epsilon_{1}(N=0)=1 \tag{36}\\
\epsilon_{1}=\frac{1}{1+N} \tag{37}
\end{gather*}
$$

\Rightarrow The parameters is inconsistent with the observations

Case 2: $H=A \frac{1}{\sin ^{2} \theta}$

$$
\begin{align*}
& \theta=\cot ^{-1}\left(e^{-\frac{4 t}{3 A}}\right), \quad H(t)=A e^{-\frac{8 t}{3 A}}\left(1+e^{\frac{8 t}{3 A}}\right) \tag{38}\\
& \epsilon_{1}=\frac{2}{3 A^{2}} \sin ^{2}(2 \theta) \tag{39}\\
& \epsilon_{2}=\frac{8}{3 A^{2}} \sin ^{2}(\theta) \cos (2 \theta) \tag{40}
\end{align*}
$$

The approach from the previous example can not be applied!

$$
\begin{gather*}
\theta_{\mathrm{f}}=\frac{1}{2} \sin ^{-1}\left(\sqrt{\frac{3}{2}} A\right) \tag{41}\\
N=\int H d t=\int \frac{H}{\dot{\theta}} d \theta \tag{42}\\
N=\left.\frac{3 A^{2}}{4}\left(-\frac{1}{2 \sin ^{2}(\theta)}+\log \frac{\sin (\theta)}{\cos (\theta)}\right)\right|_{\theta_{\mathrm{cmb}}} ^{\theta_{\mathrm{f}}} \tag{43}
\end{gather*}
$$

Case 2: $H=A \frac{1}{\sin ^{2} \theta}$

- For given A the value of θ_{f} is calculated

$$
\begin{equation*}
\theta_{\mathrm{f}}=\frac{1}{2} \sin ^{-1}\left(\sqrt{\frac{3}{2}} A\right) \tag{44}
\end{equation*}
$$

- The field value at the end of inflation - $\theta_{\text {cmb }}$

$$
\begin{gather*}
N=\left.\frac{3 A^{2}}{4}\left(-\frac{1}{2 \sin ^{2}(\theta)}+\log \frac{\sin (\theta)}{\cos (\theta)}\right)\right|_{\theta_{\mathrm{cmb}}} ^{\theta_{\mathrm{f}}} \tag{45}\\
\epsilon_{1}=\epsilon_{1}\left(\theta_{\mathrm{cmb}}\right), \quad \epsilon_{2}=\epsilon_{2}\left(\theta_{\mathrm{cmb}}\right) \tag{46}
\end{gather*}
$$

- Parameters n_{s} and r

$$
\begin{align*}
n_{\mathrm{s}} & =n_{\mathrm{s}}\left(\epsilon_{1}\left(\theta_{\mathrm{cmb}}\right), \epsilon_{2}\left(\epsilon_{1}\left(\theta_{\mathrm{cmb}}\right)\right)\right. \tag{47}\\
r & =r\left(\epsilon_{1}\left(\theta_{\mathrm{cmb}}\right), \epsilon_{2}\left(\epsilon_{1}\left(\theta_{\mathrm{cmb}}\right)\right)\right. \tag{48}
\end{align*}
$$

\Rightarrow The agreement with observations is better for larger values of the numbers of e-folds N

Final remarks

- We have investigated a model of tachyon inflation based on a dynamic of tachyon field
- Concrete functions of $H(\theta)$ for which there are analytical solutions were analyzed

$$
H=A \frac{1}{\theta^{2}} \quad H=A \frac{1}{\sin ^{2} \theta}
$$

- It is an interesting task to examine the another possibility for function $H(\theta)$ and calculate observational parameter for that cases

$$
H=A \frac{1}{\sinh ^{2} \theta}, \cdots
$$

Task for future research:

- Reconstruction of the corresponding inflationary potentials
- Prove that inflation solution is an attractor, as expected
- ...

Some references

- D.D. Dimitrijevic, N. Bilić, G.S. Djordjevic, M. Milosevic, M. Stojanovic, Tachyon scalar field in a braneworld cosmology, Int. J. Mod. Phys. A (2018), Vol 33, No. 34, 1845017.
- D.A.Steer, F.Vernizzi, Tachyon inflation: tests and comparison with single scalar field inflation, Phys.Rev.D70 (2004),043527.
- N. Bilić, D.D. Dimitrijević, G.S. Djordjevic, M. Milošević, M. Stojanović, Tachyon inflation in the holographic braneworld, J. Cosmol. Astropart. Phys. 2019 (2019) 034-034.
- M. Milosevic, M. Stojanović, D.D. Dimitrijevic, G.S. Djordjevic, On an inflation in holographic cosmology with inverse cosh potential, Annals of the University of Craiova, Physics 30 (part II) (2020).
- D.D. Dimitrijević, G. Djordjević, M. Milošević and M. Stojanović, Attractor Behaviour of Holographic Inflation Model for Inverse Cosine Hyperbolic Potential, Facta Universitatis, Series: Physics, Chemistry and Technology, Vol. 18, No 1, 65-73 (2020), ISSN 0354-4656
- M. Stojanović, M. Milošević, G.S. Djordjević and D.D. Dimitrijević, Holographic Inflation with Tachyon Field as an Attractor Solution, SFIN year XXXIII Series A: Conferences, No. A1, (2020) 311-318.

THANK YOU FOR YOUR ATTENTION!

HVALA VAM NA PAŽNJI!

