

Graphene's striped moiré acting as a switchman for metal adatoms

Dr. Srđan Stavrić^{1,2} srdjan.stavric@spin.cnr.it

¹CNR-SPIN, Chieti, Italy ²Vinča Institute, Belgrade, Serbia

Moiré is a superposition of two lattices generating a third one

Moiré is a superposition of two lattices generating a third one

Graphene (G) on metal surfaces

lattice mismatch or misalignment to a substrate leads to a moiré pattern

Moiré is a superposition of two lattices generating a third one

Graphene (G) on metal surfaces

lattice mismatch or misalignment to a substrate leads to a moiré pattern

graphene forms moiré on Rh(111), Pd(111), Ir(111), Cu(111), Ru(0001) → sixfold substrates

N'Diaye *et al*, New J. Phys. **10**, 043033 (2008)

small white dots are centers of G's hexagons

Combined STM/AFM scan of (10x10) G on (9x9) lr(111)

Voloshina et al, Sci. Rep. 3, 1072 (2013)

template for fabricating a highly ordered array of Ir clusters on G/Ir(111)

template for fabricating a highly ordered array of Ir clusters on G/Ir(111)

stable for 24h+ at room temp. Diez-Albar et al, *J. Phys. Chem. C* 123, 5525 (2019)

superlattice of single-atom magnets

Diez-Albar et al, J. Phys. Chem. C 123, 5525 (2019)

superlattice of **single-atom magnets**

Diez-Albar et al, J. Phys. Chem. C 123, 5525 (2019)

Can G form moiré other than the hexagonal network?

G forms **striped moiré** when grown on a **symmetry-mismatched substrate**, such as Ni(100) which has a square lattice

_ _

G forms **striped moiré** when grown on a **symmetry-mismatched substrate**, such as Ni(100) which has a square lattice

Height [Å]

2.95-

2.75

2.55

2.35

2.15

1.95

[011]

[01]

Zou et al, *Carbon* **130**, 441 (2018)

G forms striped moiré when grown on a symmetry-mismatched substrate, such as Ni(100) which has a square lattice

stripes \rightarrow rhombic network when G is rotated

of G, selective modification of its chemical activity, and

patterned preparation of 1D nanostructures."

1.95

[011]

2.95-

2.75

2.55

2.35

2.15

[01]

Zou et al, Carbon 130, 441 (2018)

DF

Computational approach and modeling the G/Ni(100)

4x12 supercell with 256 atoms 3 Ni layers, bottom layer fixed perfect matching of lattices

Computational approach and modeling the G/Ni(100)

4x12 supercell with 256 atoms 3 Ni layers, bottom layer fixed perfect matching of lattices

Exchange and correlation in electron gas are described using **PBE** and **vdW-DF2** correction

G is n-doped

G is n-doped

Ni atoms below the valley donate electrons (e⁻) to G

Ni atoms below the ridge are not influenced by G adsorption

induced electron density

G is n-doped

Ni atoms below the valley donate electrons (e⁻) to G

Ni atoms below the ridge are not influenced by G adsorption

the chemysorption of the valley and physisorption of the ridge

G is n-doped

Ni atoms below the valley donate electrons (e⁻) to G

Ni atoms below the ridge are not influenced by G adsorption

the chemysorption of the valley and physisorption of the ridge

G's valleys are flat whereas ridges are curved though not sufficiently to influence G's reactivity

7

© 2013 Todd Helmenstine shemisby.about.com ssiencenstes.org

7

2013 Todd Helmenstine hemistry.about.com ciencenotes.org

• Li donates e⁻ to G, F takes e⁻

2013 Todd Helmenstine iemistry.about.com iencenotes.org

- Li donates e⁻ to G, F takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e

2013 Todd Helmenstine Iemistry about.com iencenotes.org

- Li donates e⁻ to G, F takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e⁻
- Zn, Cu bind weakly to G with very small charge transfer

2013 Todd Helmenslin hemisty about.com liencenotes.org

- Li donates e⁻ to G, F takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e⁻
- Zn, Cu bind weakly to G with very small charge transfer
- Au is the only metal that takes e⁻ from **G**

Manade et al, *Carbon* **95**, 525 (2015)

 $\Delta E = E_V - E_B$

- Li donates e⁻ to G, F takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e⁻
- Zn, Cu bind weakly to G with very small charge transfer
- Au is the only metal that takes e⁻ from **G**

Manade et al, *Carbon* **95**, 525 (2015)

- Li donates e⁻ to G, F takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e⁻
- Zn, Cu bind weakly to G with very small charge transfer
- Au is the only metal that takes e^{-} from G

Manade et al, *Carbon* **95**, 525 (2015)

- Li donates e⁻ to **G**, **F** takes e⁻
- 3d TMs (Ti, ..., Ni) chemysorb to G and donate e⁻
- Zn, Cu bind weakly to G with very small charge transfer
- Au is the only metal that takes e⁻ from **G**

Manade et al, Carbon 95, 525 (2015)

barriers calculated using the nudged elastic band method

barriers calculated using the nudged elastic band method

Co atom running along the ridge

barriers calculated using the nudged elastic band method

Co atom running along the ridge

electrostatic repulsion between Co atoms and Ni surface makes the diffusion easier along the valley

barriers calculated using the nudged elastic band method

Co atom running along the ridge

electrostatic repulsion between Co atoms and Ni surface makes the diffusion easier along the valley

binding energy of Co_n cluster
$$E_{\text{bind}} = \frac{1}{n} \left(nE(\text{Co}) + E(\text{S}) - E(\text{Co}_{n}/\text{S}) \right)$$

experiments

large roundish mostly 2-layer high clusters on ridges, that cover valleys as they grow

no evidence of 1D structures

CONCLUSIONS

Ni(100) is a fantastic substrate for the fabrication of graphene's **striped moiré**

Alternate mesh of valleys and ridges leads to charge redistribution in G/Ni(100)

The **electrostatic interaction** between the atom on G and the Ni surface below dictates the adsorption site of the atom

Co deposited on G/Ni(100) builds roundish 3D nanostructures on the ridges

Future plans:

- assess the stability in air of Co nanostructures on ridges
- try to make one-dimensional Au nanostructures on the valleys

ACKNOWLEDGEMENT

Prof. M. Peressi

S. Del Puppo

Dr. C. Africh

САНУ СРПСКА АКАДЕМИЈА

Lab. TASC

V. Chesnyak

MAECI for "Progetto di Grande Rilevanza" Italy-Serbia 2019-2021

Dr. S. Picozzi

Dr. Ž. Šljivančanin

