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When a superlattice is seen in graphene, that’s a moiré

Moiré is a superposition of two 
lattices generating a third one

graphene forms moiré on Rh(111), Pd(111), 
Ir(111), Cu(111), Ru(0001)  sixfold substrates→

N’Diaye et al, New J. Phys. 10, 043033 (2008)

G/Ir(111)
small white 
dots are 
centers of 
G’s hexagons

Combined STM/AFM scan 
of (10x10) G on (9x9) Ir(111)

Voloshina et al,  Sci. Rep. 3, 1072 (2013)
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template for fabricating a highly ordered array of Ir clusters on G/Ir(111)

Θ = 0.02 ML

G/Ir(111)

N’Diaye et al, Phys. Rev. Lett. 97, 215501 (2006)

 Pan et al, Appl. Phys. Lett. 95, 093106 (2009)  Pt→
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Θ = 0.02 ML
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Diez-Albar et al, J. Phys. Chem. C 123, 5525 (2019)

Nanowritting 
on G/Ru(0001)G/Ir(111)

N’Diaye et al, Phys. Rev. Lett. 97, 215501 (2006)

 Pan et al, Appl. Phys. Lett. 95, 093106 (2009)  Pt→
stable for 24h+ at room temp.
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Can G form 
moiré other 

than the 
hexagonal 
network?

G/Ir(111)

N’Diaye et al, Phys. Rev. Lett. 97, 215501 (2006)

 Pan et al, Appl. Phys. Lett. 95, 093106 (2009)  Pt→
stable for 24h+ at room temp.
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YES! A striped moiré can occur!

Zou et al, J. Phys. Chem. C 124, 25308 (2020)

G forms striped moiré when grown on a symmetry-mismatched substrate, 
such as Ni(100) which has a square lattice

stripes  rhombic network when G is rotated→

Zou et al, Carbon 130, 441 (2018)

“… striped moires could induce periodically modulated 
electrostatic field or 1D charge accumulation/depletion, 
which could be exploited for tuning the band structure 
of G, selective modification of its chemical activity, and 
patterned preparation of 1D nanostructures.”
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Computational approach and modeling the G/Ni(100) 

12 Ni rows

4 N
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4x12 supercell with 256 atoms
3 Ni layers, bottom layer fixed 
perfect matching of lattices
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Computational approach and modeling the G/Ni(100) 

Density functional theory (DFT) calculations
12 Ni rows

4 N
i ro

w
s

4x12 supercell with 256 atoms
3 Ni layers, bottom layer fixed 
perfect matching of lattices
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Exchange and correlation in electron gas are 
described using PBE and vdW-DF2 correction
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G’s valleys are flat whereas ridges 
are curved though not sufficiently 
to influence G’s reactivity



  
S. Stavrić, V. Chesnyak, S. del Puppo, C. Africh, M. Peressi, in preparation 7

Reactivity of valleys and ridges
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Reactivity of valleys and ridges

Adatom         1st Ni layer Coulomb 
interaction dictates where the 
adatom will be adsorbed
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Co atom running along the ridge

barriers calculated using the 
nudged elastic band method

Co stays on the ridge

electrostatic repulsion 
between Co atoms 
and Ni surface 
makes the diffusion 
easier along the valley
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1D cobalt 
structures 
on ridges?
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Co nanostructures on ridges

3D preferred 
over 2D 

repulsion 
with Ni 
surface
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Co nanostructures on ridges

3D preferred 
over 2D 

repulsion 
with Ni 
surface

9

binding energy of Con cluster

2D vs 3D 
cluster growth

large roundish 
mostly 2-layer high 
clusters on ridges, 
that cover valleys as 
they grow

no evidence of 
1D structures

experiments



  

CONCLUSIONS

10

Ni(100) is a fantastic substrate for the fabrication of graphene’s striped moiré

Co deposited on G/Ni(100) builds roundish 3D nanostructures on the ridges

Future plans:

● assess the stability in air of Co nanostructures on ridges 

● try to make one-dimensional Au nanostructures on the valleys 

The electrostatic interaction between the atom on G and the Ni surface below 
dictates the adsorption site of the atom

Alternate mesh of valleys and ridges leads to charge redistribution in G/Ni(100)
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