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INTRODUCTION

 The dynamics of the information distribution is complex and affects the
everyday life, especially with multiple ideas that are being released in
social networks.
These multiple ideas often have competing nature for the same nodes

of the network
 When a certain number of the nodes will have a specific information and

when this number will grow up beyond a critical percentage of the active
nodes, then we will reach an automatic collective change behaviour of the
network.
Each node in the network can be inactive or active

 If we can control the diffusion processes of the information in the
network, we can predict the popularity of the innovation introduced.

 The diffusion processes are strongly connected with the spread of
information and innovation ideas or new trends on social networks.
 In both cases, the distribution ability of the idea is not affected only

from the idea, but also from the structure and dynamics of the
network.

 Each diffusion process has an initial point, where nodes are the first to
adopt the new idea propagated in the network and change the dynamics of
the network.

 To fully understand the social behaviour, we must know the structure
through which the information is distributed.

Models

1. Competitive cascade model: each node has positive and negative
influence probabilities 𝑝+(𝑢, 𝑣) and p-(𝑢, 𝑣), where 𝑢- is an active node, 𝑣-
is an inactive node.

Node 𝑢 will be positively influenced if 𝑢’s attempt to activate 𝑣 with
independent probability 𝑝+(𝑢, 𝑣) is successful, 𝑢 ∈ 𝐴௧

ା 𝑣 . with 𝐴𝑡
+(𝑣) ⟶

the positive successful attempt set and 𝐴𝑡
−(𝑣) ⟶ negative successful attempt.

The competitive cascade model will follow the rules:
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2. Competitive linear threshold model: in this model we will use weighted
nodes to measure the positive and negative influence in the network.

i. Initially each node 𝑣 selects a positive threshold 𝜃௩
ା and a negative

threshold 𝜃௩
ି independently from [0,1].

ii. At each time step, we propagate positive influence and negative 
influence separately. 

 How can we maximize the influence for a given idea or item that we want 
to spread all over the network?

We have to find a positive node set 𝑆଴
ା ∈ 𝑉/𝑆଴

ି with most of the k-node sets
such that the positive influence spread of 𝑆଴

ା given to negative node sets 𝑆଴
ି,

𝜎ା(𝑆଴
ା, 𝑆଴

ି) is maximized. By computing:

𝑆଴
ା = 𝑎𝑟𝑔𝑚𝑎𝑥𝜎ା 𝑆଴

ା, 𝑆଴
ି

we can solve this problem.
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FIGURE 4: THE PERCENTAGE OF NEW NODES 
THAT ARE  HEARING THE NEW IDEA AT EACH 

TIME STEP

FIGURE 3: THE PERCENTAGE OF 
ACTIVATED NODES

RESULTS

 By combining the competitive diffusion models, we can highlight the
popularity for an item or idea presented which can be improved by
considering two item diffusion: positive influencers and negative
influencers.

 Figure 5 shows the percentage of the nodes that are being positively or
negatively activated.

 At each time step, every person who knows the new idea randomly
chooses a neighbour to tell the new idea to.
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Figure 5

 Each node has an assigned probability to have the new idea and to share
it with her neighbors.

 The information is proportional with the number of links of the nodes
that already have it.

 The distribution of the information will depend on the size of the network
and the number of the active nodes of the network.

CONCLUSIONS

 We presented and analysed two competitive diffusion models, by
extending them with two influence distribution functions as a better way
to outperform the results in term of efficiency and effectiveness.

 Showed that the proposed method can predict how to maximize influence
of the node sets accurately.

Figure 1: 
Homogeneous 
Competitive 
Cascade model:
Sub modularity 
of σ+

Figure 2: 
Homogeneous 
Competitive        
Linear Threshold
model:
Sub modularity of σ+.
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