SIDIS

In Semi-Inclusive Deep Inelastic Scattering (SIDIS) processes, IN \rightarrow I'hX, one detects the scattered lepton I^{\prime}, and a hadron h. The contemporary approach is to go beyond collinear momenta picture of hadron and constituent partons and to use the so-called Transverse Momentum Dependent (TMD) Partonic Distribution and Fragmentation Functions (PDF and FF). The PDF $\hat{f}_{\mathrm{aN}}\left(\mathrm{X}_{\mathrm{B}}, \mathrm{k}_{\perp}\right)$ gives the number density of a with light-cone momentum fraction X_{B} and transverse momentum k_{\perp} inside a fast moving nucleon. The FF $\hat{D}_{h a}\left(z_{h}, p_{\perp}\right)$ gives the number density of hadron h resulting in the fragmentation of parton a with a lightcone momentum fraction z_{h} and a transverse momentum p_{\perp}, relative to the original parton motion. The SIDIS cross section is factorizable, i.e.
 ten in FSE on the angles (defined on Fig.1) ϕ_{h} and $\phi_{\mathrm{s}}-\phi_{\mathrm{h}}$.

Figure 1: SIDIS kinematics

Notations (not a full list at all): I and P : initial lepton and nucleon 4-momenta; I^{\prime} and P_{h} : final lepton and (final) hadron 4 -momenta; $z_{h}=\frac{\left(P \cdot P_{h}\right)}{(P \cdot q)} ; q=I-I^{\prime} ; y=\frac{(P \cdot q)}{(P \cdot l)} ; Q^{2}=-q^{2}=$ $2 \mathrm{M}_{\mathrm{d}} E x_{\mathrm{B}} \mathrm{y}$; M_{d} is the target (deuteron) mass; E is the lepton laboratory energy; S_{T} is the nucleon polarization; P_{T} is the measured transverse momentum of the final hadron which (at order $\mathrm{k}_{\perp} / \mathrm{Q}$) is $\mathrm{P}_{\mathrm{T}}=\mathrm{z}_{\mathrm{h}} \mathrm{k}_{\perp}+\mathrm{p}_{\perp}$. We assume some relations between collinear and non-collinear PDFs and FFs, some factorization of their variables dependence and simple Gaussian dependence on transverse momenta. Thus only 2 parameters are needed $\left(\left\langle\mathrm{k}_{\perp}^{2}\right\rangle\right.$ and $\left.\left\langle\mathrm{p}_{\perp}^{2}\right\rangle\right)$. However different publications give incompatible values for them (all values are in GeV^{2}):

$$
\begin{aligned}
\left\langle\mathrm{k}_{\perp}^{2}\right\rangle \approx 0.25,\left\langle\mathrm{p}_{\perp}^{2}\right\rangle \approx 0.20 & \text { Ref.[1], data from [2] } \\
\left\langle\mathrm{k}_{\perp}^{2}\right\rangle=0.18,\left\langle\mathrm{p}_{\perp}^{2}\right\rangle=0.20 & \text { Ref.[3], data from [] } \\
\left\langle\mathrm{k}_{\perp}^{2}\right\rangle=0.57 \pm 0.08,\left\langle\mathrm{p}_{\perp}^{2}\right\rangle=0.12 \pm 0.01 & \text { Ref.[4], data from [5] } \\
\left\langle\mathrm{k}_{\perp}^{2}\right\rangle=0.61 \pm 0.20, \text { avp }=0.19 \pm 0.02 & \text { Ref.[4], data from [6] }
\end{aligned}
$$

To clarify the problem we work with following asymmetries:

$$
\begin{align*}
& \mathrm{A}_{\cup U, \mathrm{~d}}^{\cos \phi_{\mathrm{h}}, \mathrm{~h}-\overline{\mathrm{h}}}\left(\mathrm{X}_{\mathrm{B}}\right)=\sqrt{\frac{\pi}{\left\langle\mathrm{Q}^{2}\right\rangle}}(\underbrace{\mathrm{C}_{\text {Cahn }}^{h}}_{\text {const. }}+2 \mathcal{N}_{\mathrm{Q}_{\mathrm{v}}}^{\mathrm{BM}}\left(\mathrm{X}_{\mathrm{B}}\right) \underbrace{\mathrm{C}_{\mathrm{BM}}^{\mathrm{h}}}_{\text {const. }}) \text {, } \tag{5}\\
& A_{U U, \mathrm{~d}}^{\cos 2 \phi_{\mathrm{h}}, \mathrm{~h}-\overline{\mathrm{h}}}\left(\mathrm{x}_{\mathrm{B}}\right)=\mathcal{N}_{\mathrm{q}_{\mathrm{V}}}^{\mathrm{BM}}\left(\mathrm{x}_{\mathrm{B}}\right) \underbrace{\hat{\mathrm{C}}_{\mathrm{BM}}^{\mathrm{h}}}_{\text {const. }}+\frac{\mathrm{MM}_{\mathrm{d}}}{\langle\mathrm{Q}\rangle^{2}} \underbrace{\hat{\mathrm{C}}_{\mathrm{Cahn}}^{h}}_{\text {const. }} \tag{6}\\
& A_{U T, \mathrm{~d}}^{\text {Siv,h- }}\left(\mathrm{x}_{\mathrm{B}}\right)=\frac{\sqrt{\mathrm{e} \pi}}{\sqrt{2}} \frac{\left\langle\mathrm{k}_{\perp}^{2}\right\rangle_{\text {Siv }}^{2}}{\mathrm{M}_{\text {Siv }}\left\langle\mathrm{k}_{\perp}^{2}\right\rangle} \underbrace{\mathrm{C}_{\text {Siv }}^{h}}_{\text {const. }} \mathcal{N}_{\mathrm{q}_{\mathrm{V}}}^{\text {Siv }}\left(\mathrm{x}_{\mathrm{B}}\right) \tag{7}
\end{align*}
$$

Here $A^{h^{+}-h^{-}} \equiv \frac{\Delta A^{h^{+}}-\Delta A^{h^{-}}}{A^{h^{+}}-\mathrm{A}^{h^{-}}}$, where Δ indicates polarized target, and A is the corresponding Fourier coefficient of σ integrated over redundant variables and normalized to the o-th coefficient.). These asymmetries $(5,6,7)$ are ploted on Fig. 2 below.

Figure 2: red $-\cos \phi$, green $-\cos 2 \phi$, blue - Sivers

The Sivers function is connected to the term $\mathbf{S} \cdot\left(\mathbf{k}_{\perp} \times \mathbf{P}\right)$, while the Boer - Mulders (BM) one - to $\mathbf{s}_{\mathbf{q}} \cdot\left(\mathbf{k}_{\perp} \times \mathbf{P}\right)$. We assume that they are proportional, so $\mathcal{N}_{\mathrm{q}_{\mathrm{v}}}^{\mathrm{BM}}\left(\mathrm{X}_{\mathrm{B}}\right) \approx \mathrm{A}_{\mathrm{UT}, \mathrm{d}}^{\text {Siv,h-h}}\left(\mathrm{X}_{\mathrm{B}}\right)$. In this point our analysis is significantly simplified. Because we work with difference asymmetries only PDFs and FFs of valence quarks participate in eqs. $(5,6,7)$ and more, because of the deutron target, only the combination $q_{v}=u_{v}+d_{v}$ and corresponding PDF Q_{v} take part. With the last assumption we get [7]:

Results

$$
\begin{align*}
& \underbrace{C_{\text {Cahn }}^{h} \sqrt{\frac{\pi}{\left\langle Q^{2}\right\rangle}}}_{\text {"theory" }}=\underbrace{A_{U U, \mathrm{~d}}^{\cos \phi, h-\bar{h}}\left(x_{\mathrm{B}}\right)-C_{\overline{B M}}^{h} \sqrt{\frac{\pi}{\left\langle Q^{2}\right\rangle}} A_{U T, d}^{\text {Siv,h- }}\left(x_{B}\right)}_{\text {"experiment" }}, \tag{8}\\
& \underbrace{\hat{\mathrm{C}}_{\text {Cahn }}^{h} \frac{M M_{d}}{\left\langle Q^{2}\right\rangle}}_{\text {"theory" }}=\underbrace{A_{\mathrm{UU}, \mathrm{~d}}^{\cos 2 \phi_{h}, h-\bar{h}}\left(x_{\mathrm{B}}\right)-\hat{\mathrm{C}}_{\overrightarrow{B M}}^{h} A_{\mathrm{UT,d}}^{\mathrm{Siv}, \mathrm{~h}-\bar{h}}\left(x_{\mathrm{B}}\right),}_{\text {"experiment" }} \tag{9}
\end{align*}
$$

The fitting of eq.(8) "experiment" (red) to "theory" (black) and eq.(9) "experiment" (green) to "theory" (black) are shown below

The coefficients, determined by the fits are

$$
\begin{align*}
& \mathrm{C}_{\widehat{\mathrm{BM}}}^{h}=0.54 \pm 0.80, \quad \mathrm{C}_{\mathrm{Cahn}}^{h}=-0.165 \pm 0.043 \tag{10}\\
& \hat{\mathrm{C}}_{\widehat{\mathrm{BM}}}^{\mathrm{h}}=-1.6 \pm 1.6, \quad \hat{\mathrm{C}}_{\mathrm{Cahn}}^{h}=0.045 \pm 0.124 \tag{11}
\end{align*}
$$

Note that in our case there are close formulas for Cahn coefficients:

$$
\begin{align*}
& \mathrm{C}_{\text {Cahn }}^{h}=-\left\langle\mathrm{k}_{\perp}^{2}\right\rangle \frac{\int \mathrm{d} z_{h} z_{h}\left[\mathrm{D}_{\mathrm{q}_{\mathrm{v}}}^{h}\left(\mathrm{z}_{\mathrm{h}}\right)\right] / \sqrt{\left\langle\mathrm{P}_{\mathrm{T}}^{2}\right\rangle}}{\int \mathrm{d} z_{\mathrm{h}}\left[\mathrm{D}_{\mathrm{q}_{\mathrm{v}}}^{h}\left(\mathrm{z}_{\mathrm{h}}\right)\right]}, \tag{12}\\
& \hat{\mathrm{C}}_{\text {Cahn }}^{h}=\frac{1}{\mathrm{MM}_{\mathrm{d}}\left\langle\mathrm{k}_{\perp}^{2}\right\rangle\left\langle\mathrm{p}_{\perp}^{2}\right\rangle} \frac{\int \mathrm{d} z_{h}\left[\mathrm{D}_{\mathrm{q}_{\mathrm{v}}}^{h}\left(\mathrm{z}_{\mathrm{h}}\right)\right] \mathrm{J}\left(\mathrm{z}_{\mathrm{h}}\right)}{\int \mathrm{d}{z_{h}}\left[\mathrm{D}_{\mathrm{q}_{\mathrm{v}}}\left(\mathrm{z}_{\mathrm{h}}\right)\right]} . \tag{13}
\end{align*}
$$

Here $\mathrm{J}\left(\mathrm{Z}_{\mathrm{h}}\right)=\int \mathrm{dP}_{\mathrm{T}}^{2} \mathrm{e}^{-\frac{\mathrm{P}_{\uparrow}^{2}}{\left\langle p_{\perp}^{2}\right\rangle}} \int \mathrm{dk}_{\perp}^{2} \mathrm{k}_{\perp}^{2} \mathrm{e}^{-\mathrm{k}_{\perp}^{2} \frac{\left\langle\mathrm{P}^{2}\right\rangle}{\left\langle\mathrm{k}_{\perp}\right\rangle\left\langle p_{\perp}\right\rangle}} \int_{0}^{2 \pi} \mathrm{~d} \phi \cos 2 \phi \mathrm{e}^{\mathrm{a} \cos \phi}, \mathrm{a}=$ $\left(2 z_{h} k_{\perp} \mathrm{P}_{\mathrm{T}}\right) /\left\langle\mathrm{p}_{\perp}^{2}\right\rangle$, and D are Collins functions (CF). For each quark they are tabulated in http://lapth.cnrs.fr/ffgenerator/ . From the quarks CF and because of the Q^{2}-dependence can be neglected in the region of interest we can construct CF for $q_{v}: D_{q_{v}}^{h}\left(z_{h}\right)=e_{u}^{2} D_{q_{v}}^{h}\left(z_{h}\right)+e_{d}^{2} D_{d v}^{h}\left(z_{h}\right)$,
 Note that we can view eqs. $(12,13)$ as determining the functional dependence of Cahn coefficients on $\left\langle p_{\perp}^{2}\right\rangle,\left\langle\mathrm{k}_{\perp}^{2}\right\rangle$. Having the solutions (10, 11) we can try to invert the functions and to find $\left\langle\mathrm{p}_{\perp}^{2}\right\rangle,\left\langle\mathrm{k}_{\perp}^{2}\right\rangle$. Graphically, the result is shown in Fig.4. The superposition of graphics Figure 3: red $-\mathrm{C}_{\text {Cahn, }}^{h}$, green $-\hat{\mathrm{C}}_{\text {Cann }}^{h}$. The values shows the strong correof $\left\langle\boldsymbol{p}_{\perp}^{2}\right\rangle$ and $\left\langle\mathrm{k}_{\perp}^{2}\right\rangle$ given in eqs.(1-4) are indicated by lation between $\mathrm{C}_{\text {Cahn }}^{\mathrm{h}}$ and black circle, box, diamond and triangle respectively. $\hat{\mathrm{C}}_{\text {Cahn }}^{h}$ functions which prevents $\left\langle\mathrm{p}_{\perp}^{2}\right\rangle$ and $\left\langle\mathrm{k}_{\perp}^{2}\right\rangle$ determination.
Conclusions: We have successfully tested twice the assumption that BM and Sivers functions of q_{v} (on deutron target) are proportional. Note that the corresponding fit is quite unusual with fitting parameters in data and their errors. The determination of $\left\langle\mathrm{p}_{\perp}^{2}\right\rangle$ and $\left\langle\mathrm{k}_{\perp}^{2}\right\rangle$ parameters of TMD fails because of reviled correlation between $\mathrm{C}_{\text {Cahn }}^{h}$ and $\hat{\mathrm{C}}_{\text {Cahn }}^{h}$ functions which is interesting in its own ground. Nevertheless, our result selects eqs. $(1,2)$ from the list of announced values of $\left\langle p_{\perp}^{2}\right\rangle,\left\langle k_{\perp}^{2}\right\rangle$.
Acknowledgment: The work is supported by grant KP-06-N-58/5 of BNSF.

References:

[1] M. Anselmino, et al., Phys. Rev. D 71 (2005) 074006,
[2] EMC Collaboration,'M. Arneodo et al., Z. Phys. C34'(1987) 277,
Fermilab E665 Cóllaboration, M.R. Adams et al., Phys. Rev. D48 (1993) 5057,
[3] F.Giordano, report No DESY-THESIS-2008-030,
[4] M. Anselmino et al., JHEP O4 (2014) OO5,
[5]. A. Airapetian et al. (HERMES Collaboration), Phys. Rev. D87, 074029
6. C. Adolph et al. (COMPASS), Eur. Phys. J. C73 (2013) 2531
[7] E. Christova, E. Leader, M. Stoilov, Phys. Rev. D 97 (2018) 056018.

