

Shaping the quark-gluon plasma using measurements of anisotropic flow in Pb–Pb and Xe–Xe collisions with ALICE

Catalin Ristea Institute of Space Science, RO

On behalf of the ALICE Collaboration

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Most central collision: fluctuations of participating nucleons

Anisotropic flow

Anisotropic flow: the transfer of initial spatial anisotropy into the final anisotropy in momentum space via collective interactions

Most central collision: fluctuations of participating nucleons

Sensitive to the system evolution

- Constrain initial conditions, equation-of-state (EOS), transport properties
- Stronger constraints are obtained from measurements of identified particles

Anisotropic flow

$$E\frac{d^{3}N}{d^{3}p} = \frac{1}{2\pi} \frac{d^{2}N}{p_{T}dp_{T}dy} (1 + \sum_{n=1}^{\infty} 2v_{n} \cos[n(\phi - \Psi_{n})])$$

Particle azimuthal distribution measured with respect to the symmetry plane is not isotropic \rightarrow Fourier series

 $v_{\rm n}$ quantify the event anisotropy

- v_2 elliptic flow \rightarrow reflects the almond-shaped **geometry** of the interaction volume
- v_3 triangular flow \rightarrow originates from event-by-event **fluctuations** of nucleon positions

Scalar product (SP) method

$$v_{\mathrm{n}}\{\mathrm{SP}\} = rac{\langle \langle \mathbf{u}_{\mathrm{n,k}} \mathbf{Q}_{\mathrm{n}}^*
angle
angle}{\sqrt{rac{\langle \mathbf{Q}_{\mathrm{n}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{A}*}
angle \langle \mathbf{Q}_{\mathrm{n}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{B}*}
angle}}{\langle \mathbf{Q}_{\mathrm{n}}^{\mathrm{A}} \mathbf{Q}_{\mathrm{n}}^{\mathrm{B}*}
angle}}$$

 $\mathbf{u}_{\mathrm{n,k}}=e^{\imath\mathrm{n}arphi_{\mathrm{k}}}$: unit vector of particle of interest (POI) k

 \mathbf{Q}_{n} : the event flow vector from reference particles (RPs) $Q_{
m n,x} = \sum_{
m j} w_{
m j} \cos({
m n}arphi_{
m j}), \; Q_{
m n,y} = \sum_{
m j} w_{
m j} \sin({
m n}arphi_{
m j})$

- Pseudorapidity gap $|\Delta \eta| > 2$ between POI and RPs
- v_n of π , K, p is determined using directly the SP method v_n of K^0_{S} , Λ , Ξ is determined using the v_n vs invariant mass method

$$\mathbf{v}_{\mathrm{n}}^{\mathrm{Tot}}(\boldsymbol{m}_{\mathrm{inv}}) \!=\! \mathbf{v}_{\mathrm{n}}^{\mathrm{Sgn}} \frac{N^{\mathrm{Sgn}}}{N^{\mathrm{Tot}}}(\boldsymbol{m}_{\mathrm{inv}}) \!+\! \mathbf{v}_{\mathrm{n}}^{\mathrm{Bg}}(\boldsymbol{m}_{\mathrm{inv}}) \frac{N^{\mathrm{Bg}}}{N^{\mathrm{Tot}}}(\boldsymbol{m}_{\mathrm{inv}})$$

- N^{Sgn} and N^{Bg} are extracted from fits of the invariant mass distribution
- $v_{n}^{Tot}(m_{inv})$ is measured using the SP method

STAR Coll, Phys. Rev. C66 (2002) 034904 N. Borghini, Phys. Lett. B642 (2006) 227-231 ALICE, arXiv:2107.10592

1111111111

ITS

• V0 detector (forward region)

- Triggering, centrality determination, Q-vector, event-shape selection
- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing

V0

V0 detector (forward region)

- Triggering, centrality determination, Q-vector, event-shape selection
- Inner Tracking System (ITS)
 - Tracking, triggering, vertexing

Time Projection Chamber

Tracking, vertexing, particle identification based on specific energy loss

p (GeV/c)

Event Shape Engineering (ESE)

Select events with similar centralities and different shapes based on the event-by-event flow/eccentricity fluctuations

> Flow vector q_n distribution $Q_{n,x} = \sum_i \cos(n \varphi_i) \longrightarrow Q_n = \{Q_{n,x}, iQ_{n,y}\}$ $Q_{n,y} = \sum_i \cos(n \varphi_i) \longrightarrow q_n = |Q_n| / \sqrt{M}$

Event Shape Engineering (ESE)

Event Shape Engineering (ESE)

Select events with similar centralities and different shapes based ν₂{2, |Δη|>2} on the event-by-event flow/eccentricity fluctuations 0.3 Flow vector $q_{\rm n}$ distribution 0.2 $Q_{n,x} = \sum_{i} \cos(n\varphi_{i}) \longrightarrow Q_{n} = \{Q_{n,x}, iQ_{n,y}\}$ $Q_{n,y} = \sum_{i} \cos(n\varphi_{i}) \longrightarrow Q_{n} = |Q_{n}|/\sqrt{M}$ 0. $q_{\rm p}$ selection Vn $Q_{\rm n}$ 1.5 TPC V0A V0C

2.8<n<5.1

ALI-PREL-336280

-3.7<ŋ<-1.7

-0.8<n<0.8

- q_2^{VOC} selects events up to 30% larger or smaller v_2 than the average
- $p_{T} > 3 \text{ GeV}/c$: ratios almost flat \rightarrow same source of flow fluctuations
- $p_{\rm T}$ < 3 GeV/*c*: weak $p_{\rm T}$ dependence

$v_2(p_T)$ with q_2 : 5–10%, 30–40% centrality

- *p*_T < 2 GeV/*c*: mass ordering
 Radial and elliptic flow interplay
- $p_{\rm T} \sim 2-3$ GeV/*c*: crossing between mesons and baryons
- $p_{T} \sim 3-10 \text{ GeV/}c$: particles grouping according to their type $\circ v_{2}$ (baryons) > v_{2} (mesons)

 $p_{T} > 10 \text{ GeV/}c$: no particle type dependence within uncertainties

BPU11 - 2022

$v_2(p_T)$ with q_2 : 5–10%, 30–40% centrality

- *p*_T < 2 GeV/*c*: mass ordering
 Radial and elliptic flow interplay
- $p_{\rm T} \sim 2-3$ GeV/*c*: crossing between mesons and baryons
- $p_{\rm T} \sim 3-10 \text{ GeV/}c$: particles grouping according to their type $\circ v_2$ (baryons) > v_2 (mesons)

 $p_{T} > 10 \text{ GeV}/c$: no particle type dependence within uncertainties

- Same source of flow fluctuations
 - No dependence on particle species

$v_3(p_T)$ with q_2 : 5–10%, 30–40% centrality

Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}

$v_3(p_T)$ with q_2 : 5–10%, 30–40% centrality

 $p_{_{\rm T}}$ (GeV/c)

Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}

• v_3 anti-correlated with q_2

BPU11 - 2022

ALI-PREL-336237

$v_3(p_T)$ with q_2 : 5–10%, 30–40% centrality

Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}

- v_3 anti-correlated with q_2
- Same source of flow fluctuations
 - No dependence on particle species

İSS

Xe-Xe: v, for identified hadrons

ALICE

ALICE, JHEP (10), 152 (2021)

- *p*_T < 2 GeV/*c*: mass ordering due to interplay between radial flow and anisotropic geometry
- *p*_T ~ 2–3 GeV/*c*: crossing between *v*₂ of mesons and baryons
- $p_T > 3 \text{ GeV/}c$: particles grouping according to their type $\rightarrow v_2(\text{baryons}) > v_2(\text{mesons})$

Comparison to model, Xe–Xe v_2

IP-Glasma+MUSIC+UrQMD

(B. Schenke et al.: PRC 102, 044905 (2020))

- Reproduces data for *p*_T < 1 GeV/*c*
- Overestimates data for $p_{T} > 1 \text{ GeV}/c$
 - Better agreement for protons than for mesons

Constrain initial geometry and transport coefficients (e.g. η/s)

ALICE, JHEP (10), 152 (2021)

System size dependence, v_2

İSS

Constrain initial geometry and transport coefficients (e.g. η/s)

• 0-5%: $v_2^{Xe} > v_2^{Pb} \rightarrow Xe$ deformation • 10-20%: $v_2^{Xe} \sim v_2^{Pb}$

•
$$40-50\%$$
: $v_2^{Pb} > v_2^{Xe}$

IP-Glasma+MUSIC+UrQMD (B. Schenke et al.: PRC 102, 044905 (2020))

- Reproduces data for $p_{T} < 1 \text{ GeV/}c$
- Overestimates by same amount both Pb–Pb and Xe–Xe data for p_T > 1 GeV/c

```
ALICE, JHEP (10), 152 (2021)
```

20

 $v_{\rm n}$ coefficients measured with ESE technique in Pb–Pb collisions

- v_n larger or smaller than the average
- $v_3^{"}$ is anti-correlated with q_2 classes
- Same source of flow fluctuations up to 10 GeV/c
 - No dependence on particle species
- v_2 coefficient of identified hadrons measured in Xe–Xe collisions
 - Mass ordering for $p_{\rm T}$ < 2 GeV/c
 - Crossing between mesons and baryons for $p_{\rm T} \sim 2-3$ GeV/c
 - Particle type dependence for $p_{T} > 3 \text{ GeV/}c$

 $v_{\rm n}$ coefficients measured with ESE technique in Pb–Pb collisions

- v_n larger or smaller than the average
- $v_3^{"}$ is anti-correlated with q_2 classes
- Same source of flow fluctuations up to 10 GeV/c
 - No dependence on particle species
- v_2 coefficient of identified hadrons measured in Xe–Xe collisions
 - Mass ordering for $p_{\rm T}$ < 2 GeV/c
 - Crossing between mesons and baryons for $p_{\rm T} \sim 2-3$ GeV/c
 - Particle type dependence for $p_{T} > 3 \text{ GeV}/c$

BACKUP

Particle identification (PID)

- PID @ p_T < 4 GeV/c
 - $\circ~\pi,$ K, p identified using TPC and TOF (purity >90%)
- PID @ *p*_T > 4 GeV/*c*
 - \circ π and p identified using TPC (purity >80%)
- Topological reconstruction for K_{S}^{0} , Λ and Ξ

 v_{2} {n} (n=4,6,8) measured in various collision systems over a broad multiplicity range

- Long-range multiparticle correlations in pp and p–Pb collisions at multiplicities $N_{ch} \ge 30$
- Good agreement of v_2 {4} between data and calculations from IP-Glasma+MUSIC+UrQMD

BPU11 - 2022

ALICE

PID $v_2(p_T)$ with q_2 selection: 5–10% centrality

- p_{T} > 3 GeV/*c*: ratios almost flat → same source of flow fluctuations
- $p_{T} < 3 \text{ GeV}/c$: weak p_{T} dependence \rightarrow different ellipticity for q_{2} classes
- Same values for inclusive and identified hadrons
 - No dependence on particle species

İSS

PID $v_2(p_T)$ with q_2 selection: 30–40% centrality

- $p_{T} > 3 \text{ GeV}/c$: ratios almost flat \rightarrow same source of flow fluctuations
- p_{T} < 3 GeV/*c*: almost no p_{T} dependence in contrast to central collisions
- Same values for inclusive and identified hadrons
- No dependence on particle species

İSS

$v_3(p_T)$ with q_3 : 5–10%, 30–40% centrality

İSS

Mass ordering at low p_{T} , baryon-meson grouping at intermediate p_{T}

- Same source of flow fluctuations
 - No dependence on particle species

System size dependence, v_2

 ε_{3} {2} Xe–Xe > ε_{3} {2} Pb–Pb, but v_{3} Xe–Xe ~ v_{3} Pb–Pb

No significant p_T dependence, except for π and p v_3 for $p_T <$ 2 GeV/*c* in the 0–10% centrality class

ALICE, JHEP (10), 152 (2021)

İSS