CLIC sensitivity to measure CPV Higgs mixing angle in ZZ-fusion at 1.4 TeV

Nataša Vukašinović ${ }^{1}$

I. Božović-Jelisavčić ${ }^{1}$, G. Kačarević1, T. Agatonović-Jovin ${ }^{1}$, M. Radulović2, J. Stevanović ${ }^{2}$
${ }^{1}$ Vinca Institute of Nuclear Sciences, University of Belgrade, Serbia
${ }^{2}$ Faculty of Science, University of Kragujevac, Kragujevac, Serbia

2. Accelerator \& Detector

- Baryon asymmetry of the Universe is still unresolved phenomena; - SM is insufficient to accommodate observed CPV;
- New source of CP violation can be introduced in the extended Higgs sector, via scalar-pseudoscalar mixing;
- HVV and Hff vertices can be probed in various Higgs production and decay channels at future Higgs factories;

Feynmanan diagram of ZZ-fusion

fermion couplings	
$H \rightarrow \tau^{-} \tau^{+}$	$250+\mathrm{GeV}$
$e^{-} e^{+} \rightarrow H t \bar{t}$	$500+\mathrm{GeV}$
boson couplings	
$e^{-} e^{+} \rightarrow H Z$	$250+\mathrm{GeV}$
$H \rightarrow Z Z$	$250+\mathrm{GeV}$
$H \rightarrow W W$	$250+\mathrm{GeV}$
$e^{-} e^{+} \rightarrow H e^{-} e^{+}(Z Z$-fusion $)$	$1000+\mathrm{GeV}$

HVV and Hff vertices at different center-ofmass energies [1]

- This study is based on generic model of CPV mixing (via angle $\Psi_{\text {CP }}$) of scalar (H) and pseudoscalar (A) states: $\mathrm{h}=\mathrm{H} \cos \Psi_{\mathrm{CP}}+\mathrm{A} \sin \Psi_{\mathrm{CP}}$;
- Changing the tensor structure of the $\mathrm{g}_{\mathrm{HzZ}}$ coupling [2]:
$g_{H Z Z}=$ ig $M_{z} / \cos \theta_{w}\left(\cos \Psi_{C P} \cdot g^{\mu v}+\sin \Psi_{C P} \cdot \varepsilon^{\mathrm{uv} \mathrm{\rho} \mathrm{\sigma}}\left(p_{1}+p_{2}\right)_{\rho}\left(p_{1}+p_{2}\right)_{\sigma} / M_{z}{ }^{2}\right)$
where p_{1} and p_{2} are the 4-momenta of the vector bosons in $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{He}^{+} \mathrm{e}^{-}$ (ZZ-fusion).

3. Event selection

- Consider exclusive $\mathrm{H} \rightarrow \mathrm{b} \overline{\mathrm{b}}$ channel to suppress high cross-section $\mathrm{e}^{+} \mathrm{e}^{-}$final state background;

1. Isolate 2 electrons per event;
2. Suppress background with MVA;

- BDT efficiency: 94\%
- Total signal efficiency (preselection+BDT):75\%
- Signal events after MVA: 7810/2.5 $a b^{-1}$
- Background events after MVA: <1/2.5 ab-

Stacked histogram of the Higgs mass distribution after preselection phase

Two beam acceleration scheme;

- Acceleration gradient up to $100 \mathrm{MV} / \mathrm{m}$;
- Energy staged machine (350 GeV, 1.4 $\mathrm{TeV}, 3 \mathrm{TeV}$);
$-3 \cdot 10^{6}$ Higgs bosons at all stages.

CLICdet

- 4 T field;
- Ultra low-mass Vertex detector;
- All-Si tracking;
- Particle flow calorimetry
=> jet energy resolution 3-5\%;
(crucial algorithm for this measurement).

4. Sensitive observable

Definition of CPV sensitive angle $\Delta \Phi$ in Higgs boson production in ZZ-fusion

- Information on spin orientations of VV states is contained in the angle $\Delta \Phi$ between production planes;
- $\Delta \Phi$ can be retrieved as the angle between unit vectors $\left(\overrightarrow{n_{1}}\right.$ and $\left.\overrightarrow{n_{2}}\right)$ orthogonal to these planes:

$$
\begin{aligned}
\Delta \Phi=a \cdot \arccos \left(\hat{n}_{1} \cdot \hat{n}_{2}\right), & a=\frac{q_{z_{e}-} \cdot\left(\hat{n}_{1} \times \hat{n}_{2}\right)}{\left.\mid q_{z_{e^{-}} \cdot\left(\hat{n_{1}}\right.} \times \hat{n}_{2}\right) \mid}, \\
\hat{n}_{1}=\frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{\left|q_{e_{i}^{-}} \times q_{e_{f}^{-}}\right|}, & \hat{n}_{2}=\frac{q_{e_{i}^{+}} \times q_{e_{f}^{+}}}{\left|q_{e_{i}^{+}} \times q_{e_{f}^{+}}\right|}
\end{aligned}
$$

- a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) $a=-1$, otherwise $a=1$; Direction of Z in the e-plane regulates the notion of direction (fwd. or back.) using the right-hand rule.
- Reconstructed $\Delta \Phi$ is corrected for the overall acceptance and detector performance function;
- Background (given before MVA since it is completely suppressed after MVA) is CP insensitive (figure left);
- Preliminary fit of $\Delta \Phi$ at $\Psi_{C P}=0$ indicates statistical precision of $\Psi_{C P}$ of $10 \operatorname{mrad}\left(\leq 1^{\circ}\right)$.

Pure scalar (black) and pseudoscalar (blue)

CP insensitive background

$\Delta \Phi$ distribution, reconstructed, selected, corrected for acceptance effects and detector reconstruction (red) vs. generated information (black)

