

CLIC sensitivity to measure CPV Higgs mixing angle in ZZ-fusion at 1.4 TeV

Nataša Vukašinović¹

I. Božović-Jelisavčić¹, G. Kačarević¹, T. Agatonović-Jovin¹, M. Radulović², J. Stevanović² ¹Vinca Institute of Nuclear Sciences, University of Belgrade, Serbia ²Faculty of Science, University of Kragujevac, Kragujevac, Serbia

1. Introduction

- Baryon asymmetry of the Universe is still unresolved phenomena;
- SM is insufficient to accommodate observed CPV;
- New source of CP violation can be introduced in the extended Higgs sector, via scalar-pseudoscalar mixing;
- HVV and Hff vertices can be probed in various Higgs production and decay channels at future Higgs factories;

$H \rightarrow \tau^- \tau^+$	250+ GeV
$e^-e^+ \rightarrow H t \bar{t}$	500+ GeV
boson couplings	
$e^-e^+ \rightarrow HZ$	250+ GeV
$H \rightarrow ZZ$	250+ GeV
$H \rightarrow WW$	250+ GeV
$e^-e^+ \rightarrow He^-e^+$ (ZZ-fusion)	1000+ GeV

HVV and Hff vertices at different center-of-

2. Accelerator & Detector

- Two beam acceleration scheme;
- Acceleration gradient up to 100 MV/m;
- Energy staged machine (350 GeV, 1.4 TeV, 3 TeV);
- 3 · 10⁶ Higgs bosons at all stages.

CLICdet

- 4 T field;
- Ultra low-mass Vertex detector;
- All-Si tracking;
- Particle flow calorimetry

mass energies [1]

- This study is based on generic model of CPV mixing (via angle Ψ_{CP}) of scalar (H) and pseudoscalar (A) states: $h = H \cos \Psi_{CP} + A \sin \Psi_{CP}$;

- Changing the tensor structure of the g_{H77} coupling [2]: $g_{\mu 77} = ig M_{7} / \cos \theta_{W} (\cos \Psi_{CP} \cdot g^{\mu\nu} + \sin \Psi_{CP} \cdot \epsilon^{\mu\nu\rho\sigma} (p_{1} + p_{2})_{0} (p_{1} + p_{2})_{0} / M_{7}^{2})$

where p_1 and p_2 are the 4-momenta of the vector bosons in $e^+e^- \rightarrow He^+e^-$ (ZZ-fusion).

3. Event selection

- Consider exclusive $H \rightarrow b\overline{b}$ channel to suppress high cross-section e^+e^- final state background;
- 1. Isolate 2 electrons per event;
- 2. Suppress background with MVA;
- BDT efficiency: 94%
- Total signal efficiency (preselection+BDT):75%
- Signal events after MVA: 7810/2.5 ab⁻¹
- Background events after MVA: <1/2.5 ab⁻¹

Qab 2ab 10³ Signal sount/2. γγ→qqee_epa_bs γγ→qqee_epa_epa γγ→q**q_epa_epa** e e⁺→qqll 120 140 160 100 m_H (GeV) Stacked histogram of the Higgs mass

distribution after preselection phase

=> jet energy resolution 3-5%; (crucial algorithm for this measurement). Jet energy resolution for various jet energies [4]

Definition of CPV sensitive angle $\Delta \Phi$ in Higgs boson production in ZZ-fusion

- Information on spin orientations of VV states is contained in the angle $\Delta \Phi$ between production planes;
- $\Delta \Phi$ can be retrieved as the angle between unit vectors ($\vec{n_1}$ and $\vec{n_2}$) orthogonal to these planes: (n vn)

$$\Delta \Phi = a \cdot \arccos(\hat{n}_1 \cdot \hat{n}_2), \qquad a = \frac{q_{Z_e} \cdot (n_1 \times n_2)}{|q_{Z_e} \cdot (\hat{n}_1 \times \hat{n}_2)|},$$

$$\hat{n}_{1} = \frac{q_{e_{i}^{-}} \times q_{e_{f}^{-}}}{|q_{e_{i}^{-}} \times q_{e_{f}^{-}}|}, \qquad \hat{n}_{2} = \frac{q_{e_{i}^{+}} \times q_{e_{f}^{-}}}{|q_{e_{i}^{+}} \times q_{e_{f}^{-}}|}$$

- a defines how the second (positron) plane is rotated w.r.t. the first (electron) plane; If it falls backwards (as illustrated) $\alpha = -1$, otherwise a = 1; Direction of Z in the e- plane regulates the notion of direction (fwd. or back.) using the right-hand rule.

0

 $^{2}\Delta\Phi$ [rad]

- Reconstructed $\Delta \Phi$ is corrected for the overall acceptance and detector performance function;
- Background (given before MVA since it is completely suppressed after MVA) is CP insensitive (figure left);
- Preliminary fit of $\Delta \Phi$ at $\Psi_{CP} = 0$ indicates statistical precision of Ψ_{CP} of 10 mrad ($\leq 1^{\circ}$).

References can be found at: https://tinyurl.com/References-CPV-CLIC

International Conference of the Balkan Physical Union, Belgrade, Serbia, 28.08.-01.09. 2022.