

Inclusive vector bosons results in CMS

11th Conference of the Balkan Physical Union -BPU 2022

Belgrade, August 2022

Itana Bubanja on behalf of CMS collaboration

University of Montenegro and Université libre de Bruxelles

Introduction

- There are many analysis involving W and Z boson with results obtained with CMS detector.
- The newest results will be presented
- Analysis performed are highly important for several reasons:
 - Important insights into the partonic structure of hadrons
 - Well understood final states and experimentally "clean"
 - \rightarrow Many precision measurements
 - → Perfect for improving and developing theory predictions
- Probe for **pQCD** as well as **npQCD** in different regions
- Measurement of some EWK parameters, putting limits, coupling constant calculations...

Lepton **pT > 25 GeV**; |**n**| < 2.4

Differential Z boson production cross sections

 $|y^{Z}|$

JHEP12(2019)061

- Inclusive fiducial and differential production cross sections as a function of pT and |y| (also ϕ *).
- **Di-electron** and **di-muon** channels.
- The measured cross section values agree with the theoretical predictions within uncertainties
- The predicted values are $\sigma = 682 \pm 55$ pb with MadGraph and $\sigma = 719 \pm 8 \text{ pb}$ with fixed order FEWZ.

Cross section			σ B [pb]				
$\sigma_{Z \to uu}$	694	±	6	(syst)	±	17	(lumi)
$\sigma_{Z \rightarrow ee}$	712	±	10	(syst)	±	18	(lumi)
$\sigma_{Z \to \ell \ell}$	699	±	5	(syst)	±	17	(lumi)

2016 data, 36.3 fb⁻¹

Drell-Yan pT dependance over a wide mass range

<u> CMS-SMP-20-003</u>

• Precision measurement

- The double differential cross sections
 in function of the pT of the pair (also φ*)
- Five mass bins from **50 to 1000 GeV**
- Di-electron and di-muon channels combined

Event selection:

- Two opposite charged isolated leptons
- Dressed with photons in $\Delta R(l, \gamma) < 0.1$
- Lepton pT > 25, 20 GeV; |η| < 2.4

Theoretical predictions:

- ME + parton shower:
 - Madgraph + Pythia 8
- TMD approach:
 - Cascade + Pythia 6
 - Artemide
- Ressumation:
 - Geneva

2016 data, 36.3 fb⁻¹

Drell-Yan pT dependance over a wide mass range

CMS-SMP-20-003

- MadGraph good overall agreement, disagrees with data at low pT up to 20 %
- MiNNLO has the best agreement among all the predictions
- TMD based predictions (Artemide, CASCADE) give better description at low pT, CASCADE gives very nice predictions for moderate pT but for high pT region miss higher fixed-order calculations.
- Significant improvement in data description for Geneva qT for all the distributions

2016, 2017, 2018 data; 138 fb⁻¹

Drell-Yan forward-backward asymmetry at high dilepton masses

<u>JHEP 08 (2022) 063</u>

- Asymmetry(A_{FB}) and the angular coefficient (A₀) as a function of lepton pair mass for masses larger than 170 GeV in 7 mass ranges.
- The difference between the dimuon and dielectron asymmetries a test of lepton flavor universality
- To set limits on the presence of additional gauge bosons
- Di-electron and di-muon channels combined

• Measure the **angle** between **final state lepton** and **initial quark**

- Results obtained by template fitting approach - 2D templates binned in cos(0) and rapidity
- Additional fiducial correction applied so final result represents generator-level A_{FB} in full phase space

Event selection:

- Two opposite charged isolated leptons
- Muon pT > 15 GeV; |η| < 2.4
- Electron pT > 15 GeV; |η| < 2.5

2016, 2017, 2018 data; 138 fb⁻¹

Drell-Yan forward-backward asymmetry at high dilepton masses

JHEP 08 (2022) 063

- No statistically significant deviations from standard model predictions are observed.
- Measured asymmetry 0.612 ± 0.005 (stat) ± 0.007 (syst) and angular coefficient is 0.047 ± 0.005 (stat) ± 0.013 (syst)
- Observed lower limit on the Z' mass is 4.4 TeV

W boson decay branching fractions

<u> Phys. Rev. D 105, 072008</u>

- Precision measurement
- The leptonic and inclusive hadronic decay branching fractions
- Lepton flavor universality (LFU) violation test
- Features are made for the best isolation of $W \rightarrow \tau$ decays

- Binned maximum likelihood estimation fitting templates
- Event categorisation done based on number of leptons, jets and b-tagged jets

- The results are **consistent with the LFU** hypothesis for the weak interaction
- More precise than previous measurements based on data collected by the LEP experiments
- Ratio of hadronic-to-leptonic branching fractions to the theoretical prediction is used to derive some standard model parameters
- Strong coupling constant at the W boson mass scale as = 0.095 ± 0.033

	$D(W \rightarrow W)$	
	CMS	LEP
${\cal B}(W ightarrow e \overline{ u}_e)$	$(10.83 \pm 0.01 \pm 0.10)\%$	$(10.71\pm0.14\pm0.07)~\%$
$\mathcal{B}(W o \mu \overline{ u}_{\mu})$	$(10.94 \pm 0.01 \pm 0.08)\%$	$(10.63 \pm 0.13 \pm 0.07)~\%$
$\mathcal{B}(W o au \overline{ u}_{ au})$	$(10.77 \pm 0.05 \pm 0.21)\%$	$(11.38\pm0.17\pm0.11)~\%$
${\cal B}({ m W} o { m q} \overline{ m q}')$	$(67.46 \pm 0.04 \pm 0.28)\%$	
Assuming LFU		
$\mathcal{B}(\mathrm{W} ightarrow \ell \overline{ u})$	$(10.89 \pm 0.01 \pm 0.08)\%$	$(10.86 \pm 0.06 \pm 0.09)\%$
$\mathcal{B}(W ightarrow q \overline{q}')$	$(67.32 \pm 0.02 \pm 0.23)\%$	$(67.41 \pm 0.18 \pm 0.20)\%$

Summary

- Overview of several current analysis involving W and Z bosons
- Results obtained with CMS detector, 13 TeV data from Run II period
- Comparison with several theory predictions
- Better understanding of the QCD
- Important test for new models and some physics concepts
- Putting limits to current physics models

Full list of analysis from CMS collaboration: https://cms-results.web.cern.ch/cms-results/ public-results/publications/SMP