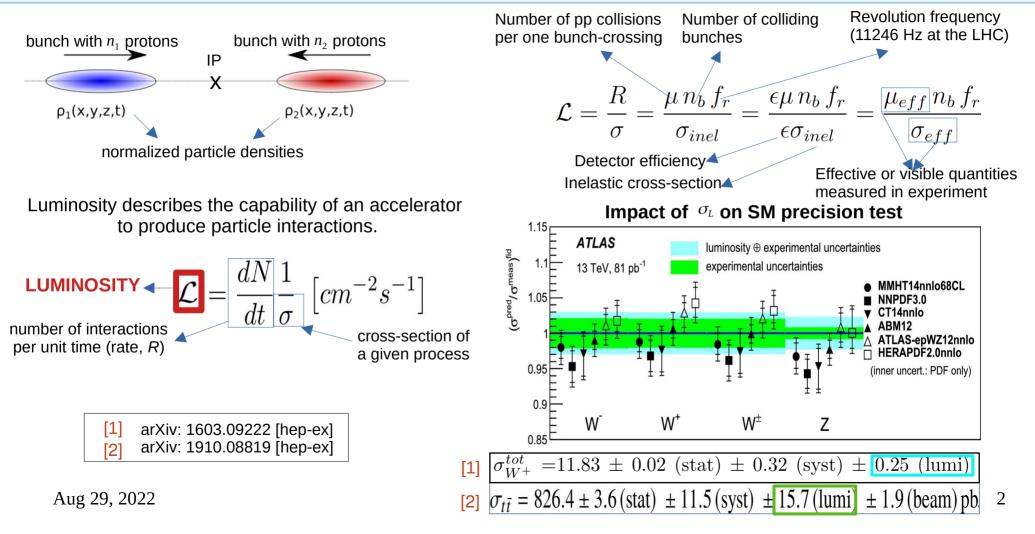
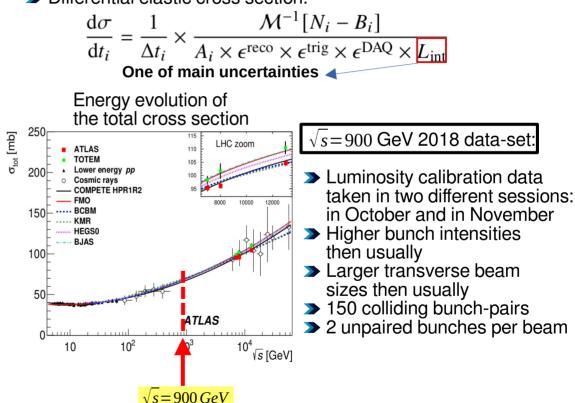


Absolute luminosity calibration in pp collisions at 900 GeV center-of-mass energy in the ATLAS experiment


Richard Hawkings [CERN] Witold Kozanecki [IRFU, CEA, Saclay] Fairouz Malek [LPSC, Grenoble] ≫ <u>Veljko Maksimovic</u> [IPB, Belgrade] Nenad Vranjes [IPB, Belgrade]

29/08/22

ATLAS Luminosity definition and measurement

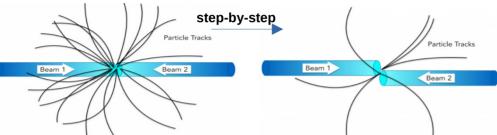

EXPERIMENT Total σ_{pp} measurement and \mathcal{L} determination at $\sqrt{s} = 900 \text{ GeV}$

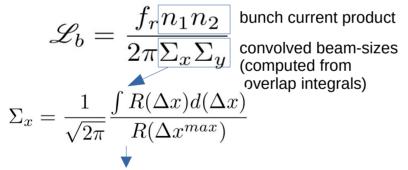
- > Measuring $\sigma_{tot}(pp \rightarrow X) \rightarrow$ fundamental quantity
- CAN NOT be calculated from the first principles
 CAN be measured using Optical theorem:

$$\sigma_{tot}^{2} = \frac{16\pi(\hbar c)^{2}}{1+\rho^{2}} \frac{d\sigma_{el}}{dt}|_{t=0}$$

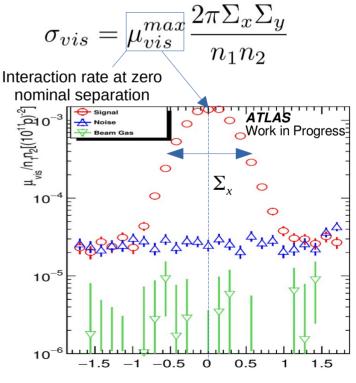
- $\begin{array}{l} \rho \quad \text{is small correction related to} \\ \text{elastic scattering amplitude:} \end{array} \\ \rho = \frac{Re[f_{el}(t)]}{Im[f_{el}(t)]}|_{t \rightarrow 0}. \end{array}$
- *t* is variable related to the scattering angle used to describe elastic-scattering events.
- > $t \rightarrow 0$ requires SPECIAL RUNS:
 - 1) Special beam optics> giving the proton beams a very small angular spread
 - 2) Special detectors> Far away from the IP but very close to the proton beams

- ATLAS uses the method for a precise luminosity measurement to obtain the absolute normalization
- Differential elastic cross section:




Van der Meer (vdM) scan formalism

The absolute luminosity scale can be determined from dedicated beam-separation scans (Van Der Meer scans)

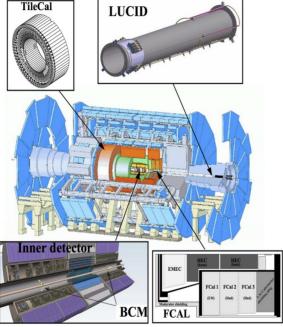

> Luminosity can be expressed using beam parameters:

It is assumed that particle density functions (in each bunch) **can be factorized** into independent x and y components \rightarrow non-factorization correction

Aug 29, 2022

- > Measuring interaction rate as $\longrightarrow \Sigma_x, \Sigma_y$ as a function of beam separation
- >> Visible cross-section is a calibration constant:

 $\Delta Y[mm]$



Luminosity detectors and algorithms

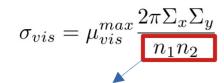
Luminosity detectors:

- RUN-2 primary detectors:
 - LUCID* Čerenkov detector
 - >Far forward region >Provides bunch-by-bunch measurements
 - Contains 16 photomultiplier tubes (PMTs)
 - >PMTs coated with radioactive ${}^{207}\text{Bi} \rightarrow$ calibration signal
 - BCM** diamond detector
 Provides bunch-by-bunch measurements
 - >1.84 m from the beam pipe
- Calorimeters:
 - EMEC, FCal, TileCal
 >Measure bunch-integrated luminosity
- Track counting detectors - Pixel and SCT detectors

Algorithms:

- > Fundamental assumptions:
 - 1) The distribution of pp interactions is a Poisson distribution
 - 2) The efficiency to detect a single pp interaction is independent of a total number of interactions
- > EventOR- Signal on A OR C side of the IP
- HitOR- Sum of recorded signals in all available detector modules Nmodules:

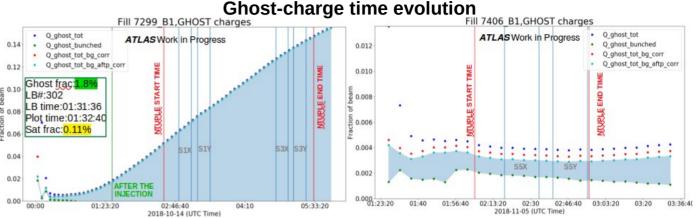
$$\mu_{vis}^{HIT} = -\ln\left(1 - \frac{N_{HIT}}{N_{BC}N_{Modules}}\right)$$


- Advantage: Large number of modules
- EventAND- Recorded signal on both sides of the IP

*LUCID: LUminosity Čerenkov Integrating Detector **BCM: Beam Condition Monitor

Ghost charge and satellites bunches

- Devices for measuring bunch currents: - FBCT*, BPTX*
 - >sensitive to bunch structure >have non-linear behavior
 - \rightarrow Offset correction
 - DCCT*

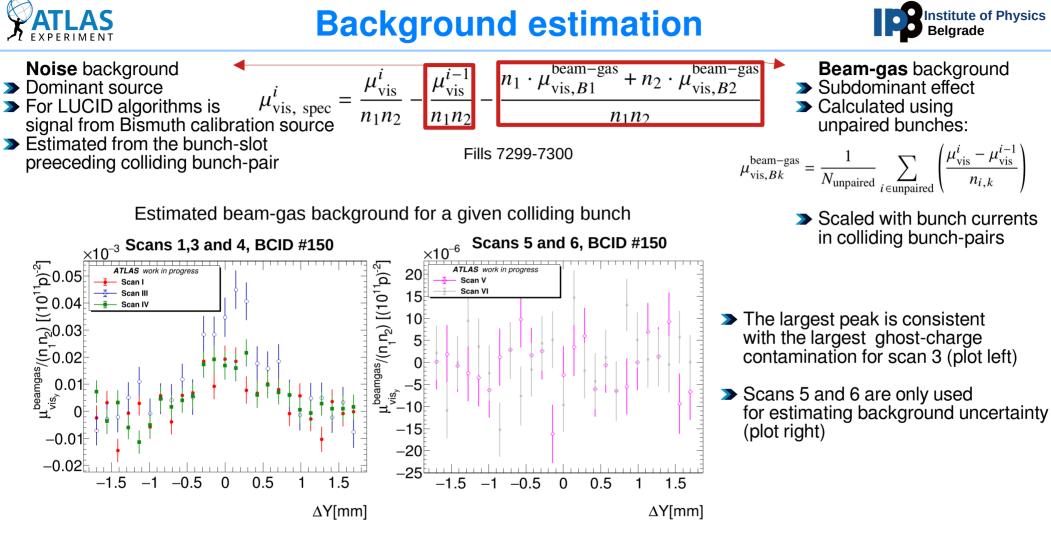

>more accurate

>measures only bunch integrated current

Ghost charge and satellites bunches:

- \blacktriangleright Ghost charge \rightarrow protons present in nominally empty bunch slots picked up by the more sensitive DCCT
- Satellites → protons present in the collision bunch slots measured by the FBCT in nominally empty RF buckets (10 RF buckets per 25 ns bunch slot)
- Bunch currents must be corrected for ghost charge and satellites as part of bunch integrated normalization

Aug 29, 2022DCCT – DC Current TransformersFBCT – Fast Beam-Current Transformers
BPTX – Beam-Pickup Timing system


Ghost-charge and satellites fraction of beam

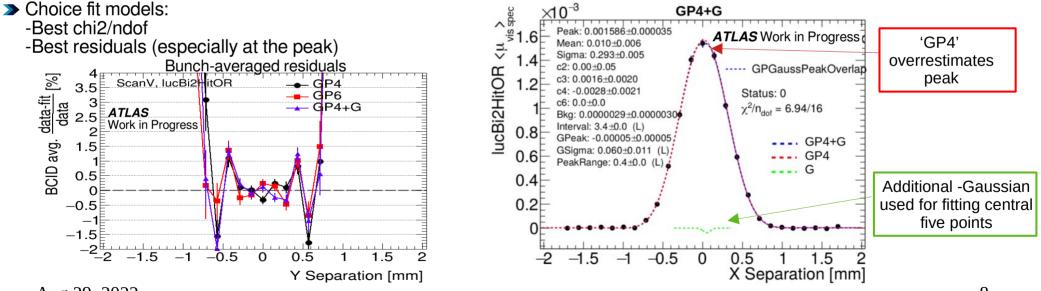
		Ghost[%]		Satellites[%]		Effect on
	Scan	B1	B2	B1	B2	<i>O</i> _{vis} October session
	1	7.5	7.0	0.35	0.36	160/
	3	13.5	13.0	0.6	0.6	34% Extremely large level of ghost charge bias the determination of the
	4	7.5	8.0	0.3	0.4	19% Visible cross-section
	5	0.3	0.25	0.05	0.05	0.6% Typically level of ghost charge: Uncertainty
nd	6	0.3	0.26	0.05	0.05	0.6% Jestimated using only scans 5 and 6

November session vdM scans were performed with better LHC RF system settings

 \rightarrow Therefore much worse ghost charge for scans 1, 3, 4

November session

Aug 29, 2022



- Parameters are determined empirically from the fit of Gaussian-like functions after subtracting background
- > Single Gaussian example:

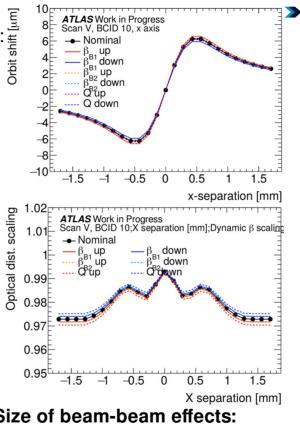
$$\mathcal{R}(\Delta x) = \frac{A}{\sqrt{2\pi\sigma}} \exp\left(-\frac{\Delta x^2}{2\sigma^2}\right) \longrightarrow \Sigma_x = \frac{1}{\sqrt{2\pi}} \cdot \frac{\int_{-\infty}^{\infty} \mathcal{R}(\Delta x) d(\Delta x)}{\mathcal{R}(0)} = \sigma$$

Convolved beam size equals Gaussian width

- > Default fit function for 900 GeV was 'GP4+G':
 - Linear combination of Gaussian multiplied by a 4th order polynomial and a single Gaussian
 - Single Gaussian for fitting the bulk of the distribution in order to ensure unbiased estimates of $\mu_{\rm vis}^{\rm max}$
- ➤ 'GP4+G' fitting example

Aug 29, 2022

Beam-beam effects and Orbit-drift

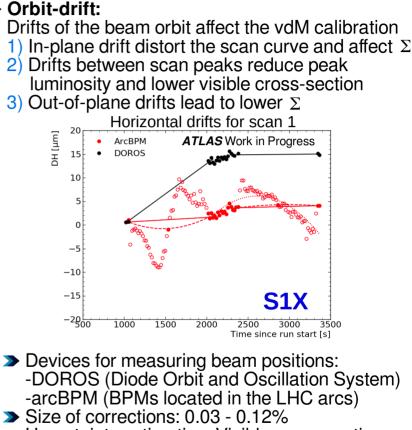


Beam-beam effects:

LHC beams interact electromagnetically: $\frac{1}{4}$

- 1) Mutual deflection of the two beams (computed using analytical equation)
- 2) Defocussing leading to optical distortion(computed from simulations)
- > Beam-beam effects parameters:
 - Beam-beam separation
 - Beam energy and transverse sizes of the beams
 - Bunch currents
 - Beta* values
 - Fractional tune
- Beam-beam deflection : -Orbit shift is computed using the Bassetti-Erskine formula
- Optical distortion:
 - Based on simulations
 - Parametrization: xi, Q x, Q y
- Systematic effects are calculated by Size of beam-beam effects: varying initial parameters within their errors

Aug 29, 2022



Beam-beam deflection (2.42-3.11%)

Optical distortion (-1.84 - -2.31%)

Total beam-beam correction $\sim 0.6\%$

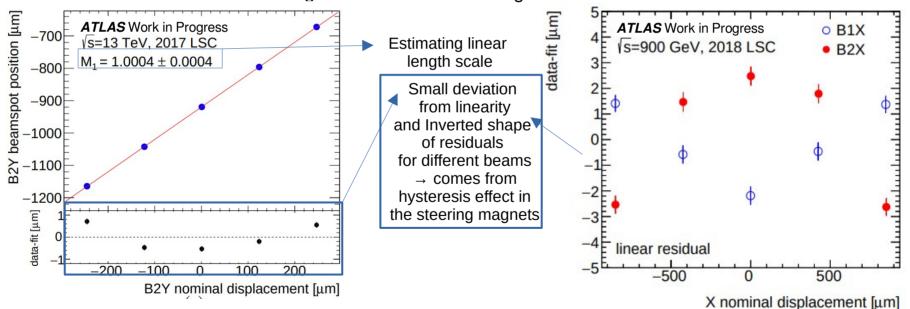
compensated by the

- Uncertainty estimation: Visible cross-section fractional difference between DOROS and arcBPM readings
 - 9

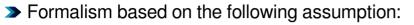
VdM calibration systematics

Source of uncertainty	Uncertainty [%]		
FBCT offset correction	0.02%	•	 Uncertainties in table left uncorrelated between each other Dominant sources of uncertainty: > Scan-to-scan reproducibility > Reference specific luminosity > Background subtraction > Beam-beam effects
Orbit-drift correction	0.32%	Beam-conditions dependent uncertainties	
Beam position jitter	0.14%		
Emittance growth	0.34%		
Bunch-by-bunch consistency	0.00%		
Fit model	0.36%		
Background subtraction	0.49%		Non-factorization uncertainty not included in the table left (uncertainty yet to be assessed)
Beam-beam effects	0.43%		
Reference specific luminosity	0.56%	Instrumental uncertainties	
Ghost-charge and satellites subtraction	0.14%		Total precision achieved ~ 1.35%
Magnetic non-reproducibility and LSC	0.05%		
Scan-to-Scan reproducibility	0.84%		
Total uncertainty	1.35%		

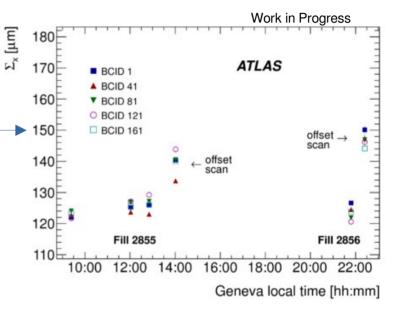
- Luminosity is an important parameter of accelerator
- L systematics dominate several key SM measurements, like W, Z top cross sections as well as total pp cross section
- Calibration of the measured luminosity is done by analysing data from beam separation scans (van der Meer scans)
- > The absolute precision lies in 1-2% range for pp
- > In this talk we present vdM analysis of a special dataset at $\sqrt{s}=900$ GeV
- Main contribution to the systematic uncertainties arise from Scan-to-Scan reproducibility, reference specific luminosity and background subtraction
- > Overall uncertainty is 1.35% with non-factorization uncertainty yet to be assessed



SATLAS Length scale calibration and Magnetic non-linearity Belgrade

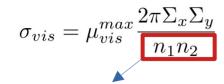

- > Nominal beam displacement so far = Intended beam separation using LHC steering magnets
- Σ_x , Σ_y measurements requires knowledge of the ACTUAL beam displacement
- > Length scale calibration scans are used for this purposes:
 - Target beam was moved to five equally-spaced positions
 - Target beam position measured using BEAMSPOT position
 - BEAMSPOT position: Position fitted from primary vertices reconstructed in the ID for head-on collision
 - HEAD-ON collision satisfied using miniscans of the non-target beam

Estimated combined uncertainty for 900 GeV centre-of-mass energy ~0.05% Aug 29, 2022



 $\mathscr{L}(\delta_x, \delta_y) = f_x(\delta_x) f_y(\delta_y)$

- > Evidance for non-factorization effect:
 - Σ_x , Σ_y are larger in offset scans
- Single beam parametrization for Non-Factorization effect: - Fitting Luminosity vs. Beam separation \rightarrow
 - True luminosity unbiased by non-factorization effects
 - Fitting Beamspot displacement vs. Beam separation
 - Fitting Beamspot width vs. Beam separation



- \gg Impact of non-factorization correction \rightarrow Scan-to-scan reproducibility improvement
- > 900 GeV 2018 data-set \rightarrow Non-factorization effect uncertainty yet to be assessed (with maximal value of Run-2 pp 13 TeV vdM ~0.6%)

Bunch currents normalization

Devices for measuring bunch currents: - FBCT*, BPTX*

>sensitive to bunch structure

>have non-linear behavior

- DCCT*

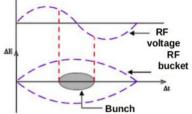
>more accurate

- >measures only bunch integrated current
- Bunch-current normalization:

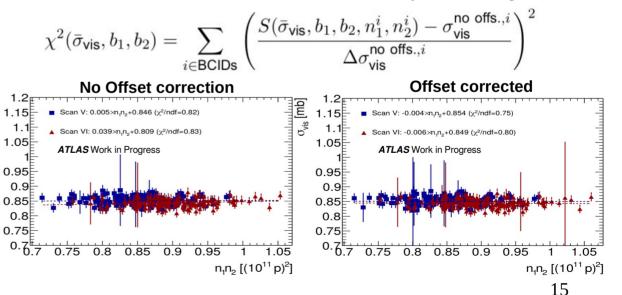
3) $FBCT_{ikc} = \overline{GS} \times \frac{DCCT_i}{FBCT_{iR}} \times FBCT_{ikR} \stackrel{\textcircled{\baselineskip}{$>}}{\overset{[\baselineskip}{$>}} 1.1 \\ 1.15 \\ 1.05 \\$

 Bunch integrated measurement normalization to more accurate DCCT measurements
 Determination of bunch-by-bunch fraction: FBCT & BPTX offset fits
 Ghost-charge and satellites correction

Aug 29, 2022 DCCT – DC Current Transformers FBCT – Fast Beam-Current Transformers BPTX – Beam-Pickup Timing system

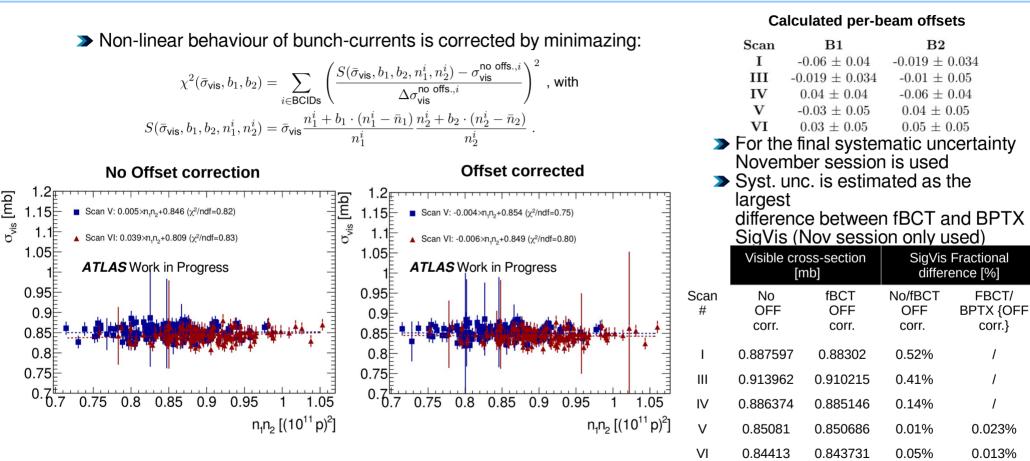

Ghost charge and satellites

> Ghost charge \rightarrow


protons that are present in nominally empty bunch slots that will still be picked up by the more sensitive DCCT

> Satellites \rightarrow

protons present in the collision bunch slots that are measured by the FBCT in nominally empty RF buckets (10 RF buckets per 25 ns bunch slot) **Offset correction**

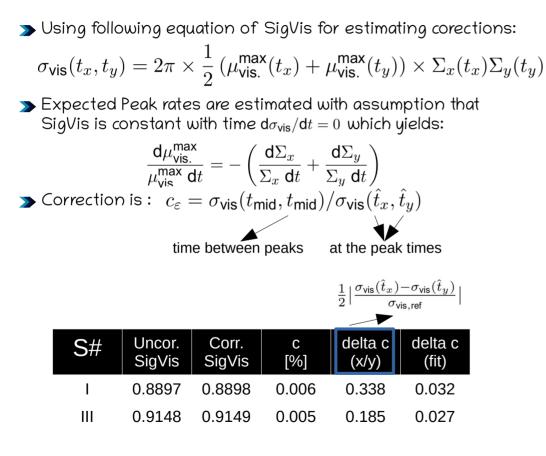

> Non-linear behaviour of bunch-currents is corrected by minimazing:

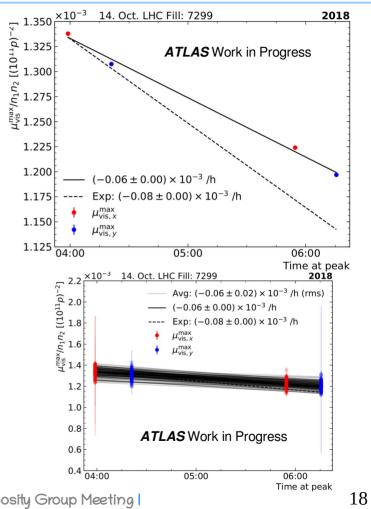
fBCT offset correction

Aug 29, 2022

> Convolved beam sizes measured during a small period of time

> Emittance grow or shrink affecting calibration:


- \blacktriangleright Change of Σ is shown for Fill 7299
 - > Fill 7299 $\rightarrow \Sigma$ increasing both for x-scan and y-scan
 - > Fills 7300, 7406, 7407 \rightarrow less then two on-axis scan available for estimating emitance growth
- Scan curves can be distorted by change of beam width
 Horizontal and vertical widths are measured at different periods
 Less transparent lines show the BbyB ∑ change of time → bias on σ_{vis}
 Slope of average ~ Average of slopes
- [350 [1] 2018 2018 14. Oct. LHC Fill: 7299 14. Oct. LHC Fill: 7299 [⁴⁵⁰ [^{47]} 425 Avg: +10.29 ± 4.42 μm/h (rms) $+10.31 \pm 0.39 \,\mu$ m/h Avg: $+9.95 \pm 5.79 \ \mu m/h$ (rms) $+10.20 \pm 0.39 \,\mu$ m/h 345 $+10.31 \pm 0.39 \,\mu$ m/h Σx 400 On-axis $+10.20 \pm 0.39 \,\mu$ m/h Σ_{v} Fill # 375 340 scans ATLAS Work in Progress 350 7299 S1, S3 335 325 7300 S4 300 7406 S5 330 **S6** 275 7407 ATLAS Work in Progress 325 250 225¹04:00 320 05:00 06:00 04:00 05:00 06:00 Time at peak Time at peak


Veljko Maksimović | 900 GeV vdM | Offline Luminosity Group Meeting |

Emittance growth correction

| Veljko Maksimović | 900 GeV vdM | Offline Luminosity Group Meeting |


SATLAS Beam position jitter ; B-by-B consistency

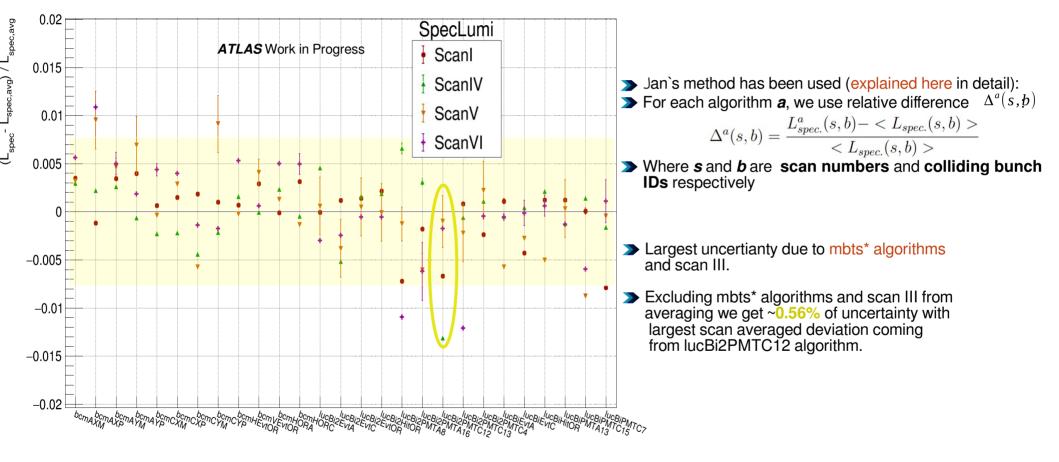
Performing pseudo-experiment randomly changing samples:

 $x_{new} = x + rnd.Gauss(0, \sigma_{jitter})$

Using 2000 iterations (toys)
 Using ReIRMS = RMS/SigVIs to estimate uncertainty ~ 0.14%

Scan	SigVis	RMS	RelRMS
I	0.879024	0.000894	0.10%
111	0.908484	0.000863	0.09%
IV	0.880739	0.000957	0.11%
V	0.852059	0.001227	0.14%
VI	0.849463	0.001034	0.12%

Scan	B-by-B	
I	0	
Ш	0.49%	
IV	0	
V	0	
VI	0	


Bunch-by-bunch uncertainty is calculated RMS corrected for average *o_{vis}* stat. unc:

$$RMScorr = \frac{1}{\sigma_{vis}} \sqrt{RMS^2 - (\delta\sigma_{vis})^2}$$

> Bunch-by-bunch consistency is zero if RMS is smaller than $\delta \sigma_{\rm vis}$

