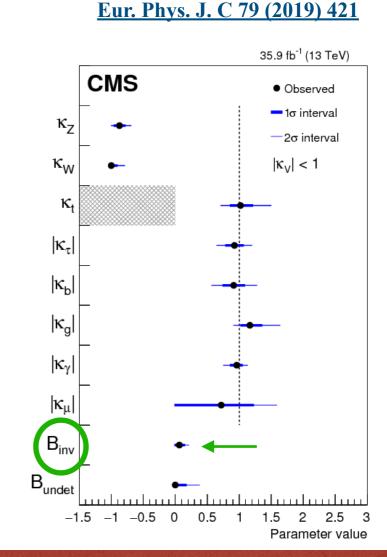

Search for the invisible decays of the Higgs boson at 13 TeV (CMS experiment) Vukasin Milosevic (IHEP Beijing/University of Belgrade)

INTERNATIONAL CONFERENCE OF THE BALKAN PHYSICAL UNION (BPU11) 28.8-1.9.2022.

中國科學院為能物加加完備 Institute of High Energy Physics Chinese Academy of Sciences

University of Belgrade

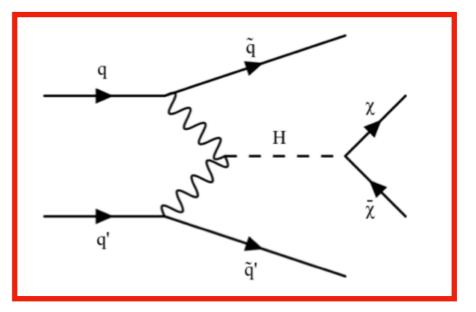
The "crown jewel" of the experimental particle physics:

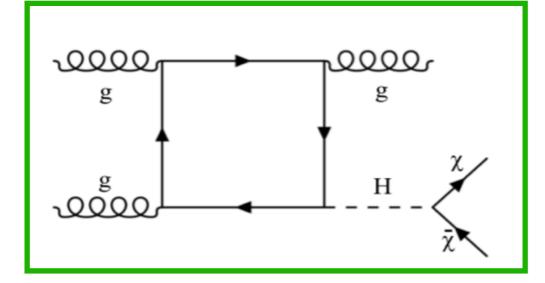

- Higgs boson was discovered by ATLAS and CMS experiments at CERN in 2012
- All of the following measurements of its properties have been consistent with the Standard Model (SM)
- Large uncertainties of these measurements can allow for physics beyond the SM

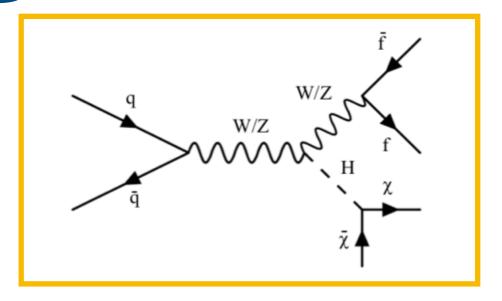
Why the interest in the invisible final state?

- \ast According to the SM, the probability of Br(H \rightarrow 4v) ~ 0.1 %

 - Higgs boson could be a mediator between SM and DM sector
 - Detection would require it to recoil against a visible system

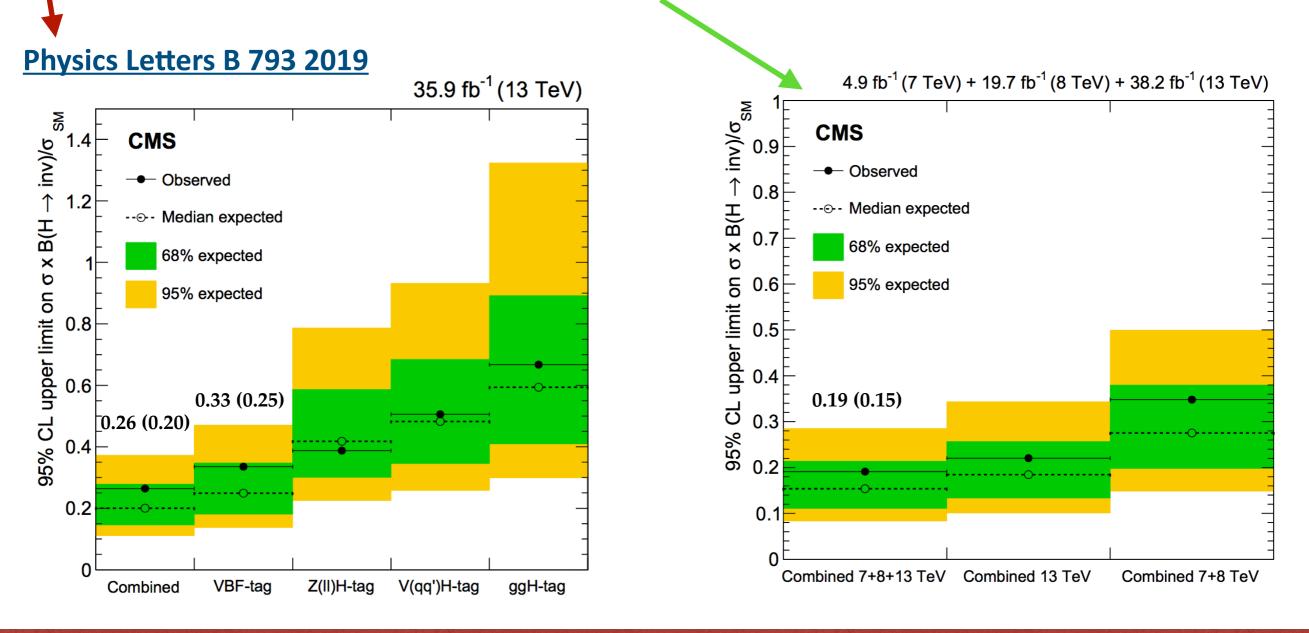





***** Higgs boson can take a role of a mediator between SM and DM particles:

- Detection requires for the Higgs to recoil against a visible system
- * **Large** missing transverse energy ($E_{T,miss}$)

qqH : Higgs boson is produced in a vector boson fusion topology (VBF)
VH: Higgs boson production with a vector boson
ggH: Higgs boson produced via gluon fusion.



Where were we up untill now? Early Run 2 combination

The first combination measurement using Run 2 data was published using the 2016 dataset
 No significant deviation from the SM was reported:

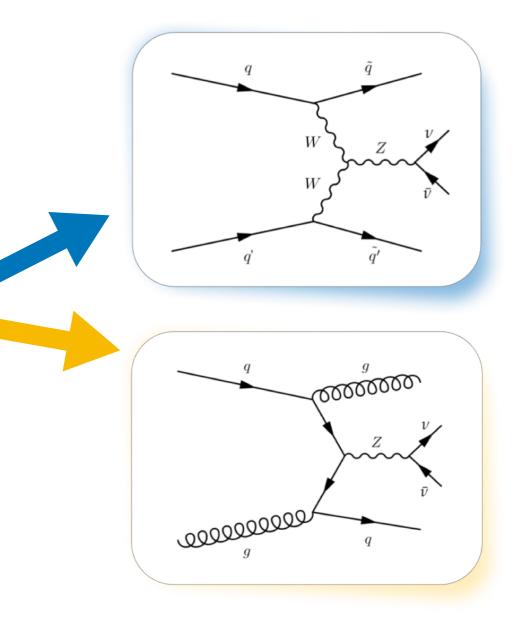
- [♠] The result of the measurement is expressed as the 95% CL upper limit on the B(H → inv.)
- ***** This publication also included a first combination of Run 1 and 2015+2016 data
 - ◆ Setting the B(H \rightarrow inv) limit to be at 0.19 (0.15) for the observed (expected) value

***** VBF production mode of the Higgs boson has a characteristic signature:

- Two jets with a large geometrical separation
- **High dijet invariant mass** (a good way to control S/B)
- Represents a channel with the largest sensitivity

Main backgrounds:

- QCD and EWK produced V+jets (where V= W/Z)
 - \blacklozenge Irreducible when Z->vv and W->lv


With the charged lepton being missed in the detection

***** Estimated through dedicated control regions in data (CR):

- * Z or W boson associated with the same dijet topology
- * Resulting in four CRs separated by lepton flavour (e/ μ)

QCD multi jet processes - data driven estimation

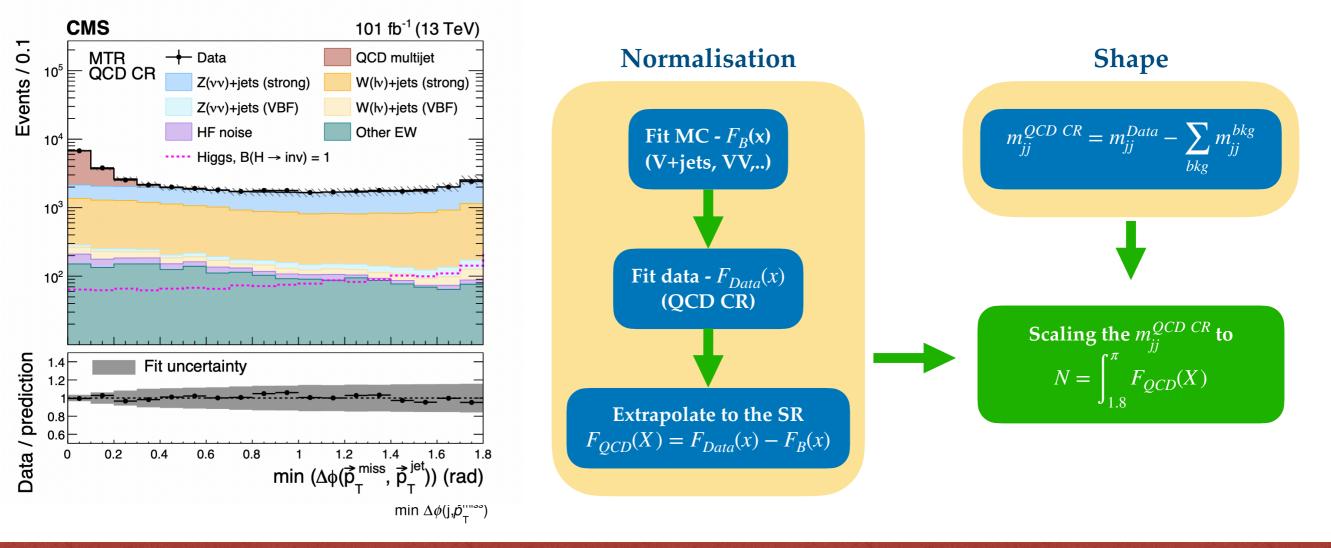
Contributions expected from diboson and top processes are estimated using simulation

Previous analysis strategy relied on purely E_{T.miss} trigger algorithms ***** VBF topology targeting cuts were applied at the offline stage ✤ Imposed a high E_{T.miss} requirement: E_{T.miss} > 250 GeV **HLT Begin sequence** ✤ Froming the high-E_{T.miss} (MTR) analysis category hltL1DiJetVBF - taking the input L1 seeds HLT RECO MET Sequence The recent upgrades of the Level-1 trigger enabled complex variable hltCaloMET66 - requirement on the Calo MET manipulation at the first triggering stage: HLT Calo Noise MET Brought in the possibility to target VBF topology
 Sequence hltCaloNCMET66 * New VBF H L1 algorithm explored selection requirements (m_{ii} , $p_T^{j1/2}$) - requirement on the Calo (Noise Cleaned) MET **HLT AK4 PF Jets** A follow up path at the second (HLT) stage: Sequence hltParticleFlowNoMu Matched the selection logic of the L1 seed Producer of PF MET no µ hltPFMETVBFProducer Imposed E_{T.miss} cuts in order to reduce rate/timing hitPFMETVBF110 Requirement on PF MET > 110 • These additions led to a formation of a low- $E_{T,miss}$ analysis category (VTR) hltL1TPFJetsMatching - Select 2/3 jet categories ✤ For 160 <*E_{T.miss}* < 250 GeV, where the VBF trigger performs better than</p> 3 jet category 2 jet category the generic $E_{T,miss}$ ones HLTDijet110_35_Mjj650_PFMET110 HLT_TripleJet110_35_35_Mjj650_PFMET110 Dijet path -- Triple jet path -

Previous analysis strategy relied on purely E_{T.miss} trigger algorithms **•** VBF topology targeting cuts were applied at the offline stage • Imposed a high $E_{T.miss}$ requirement: $E_{T.miss}$ > 250 GeV Froming the high-E_{T.miss} (MTR) analysis category е_{trig} **CMS** Supplementary The recent upgrades of the Level-1 trigger enabled complex variable MTR: 0.8 manipulation at the first triggering stage: ≥ 2j, p_>80,40 GeV M_{jj}>200 GeV, ∆φ_{ii}<1.5 Brought in the possibility to target VBF topology
 0.6 VTR: * New VBF H L1 algorithm explored selection requirements (m_{jj} , $p_T^{j1/2}$) ≥ 2j, p_>140,70 GeV M_{ii}>900 GeV, ∆φ_{ii}<1.8 0.4 A follow up path at the second (HLT) stage: /ITR triggers Matched the selection logic of the L1 seed threshold 0.2 VTR triggers VTR p' ' threshold Imposed E_{T.miss} cuts in order to reduce rate/timing 200 250 300 **´150** 350 400 450 These additions led to a formation of a low-*E_{T.miss}* analysis category (VTR)

the generic $E_{T,miss}$ ones

✤ For 160 <*E_{T.miss}* < 250 GeV, where the VBF trigger performs better than</p>


The Run 2 analysis strategy: QCD multijet estimtion

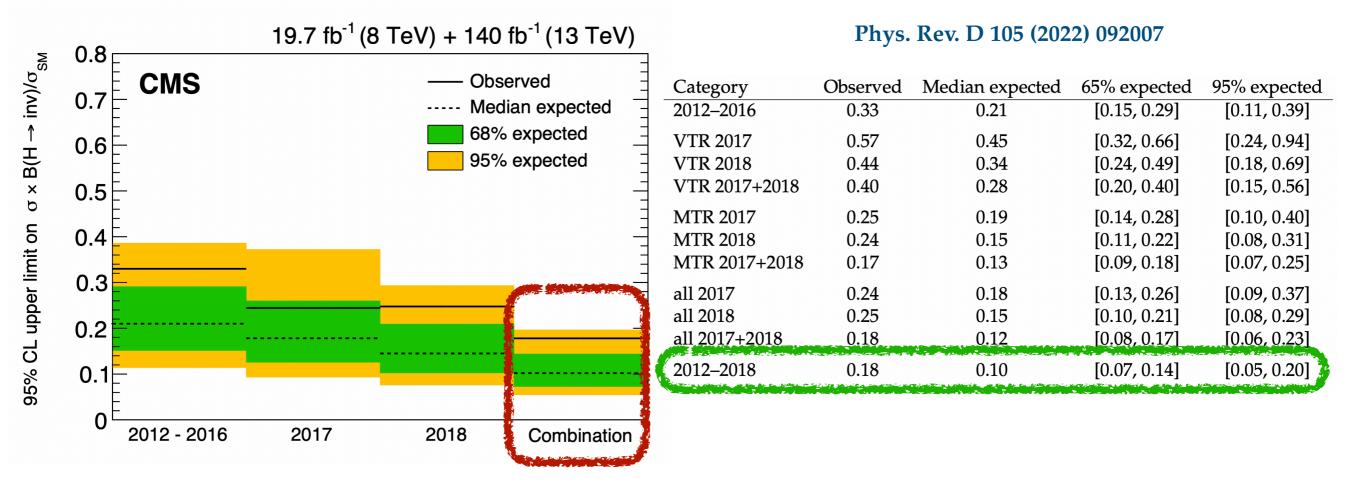
• A data-driven estimate is performed using events in which the $E_{T,miss}$ arises from mismeasured jets:

- * A QCD multijet enriched region (CR) is formed by inverting one of the selection requirements
- [♠] The low $X = min\Delta\phi(j, E_{T,miss})$ is used to define QCD CR

***** Two steps are taken in order to obtain the QCD multijet contribution in the SR:

Shape of the dijet mass and its SR normalisation

* The VBF H(invisible) measurement using full Run 2 data - latest result (Phys. Rev. D 105 (2022) 092007)


Improvements to he analysis strategy:

- Addition of new VBF H(invisible) topology targeting triggers
 - Creating of a new, low E_T^{miss} , analysis category
- Addition of another (γ) control region

Helping with statistical precision of Z(ll) CRs

Brought ~20% gain in terms of signal sensitivity (when compared to 2016 strategy)

No significant deviation from the SM was reported and the observed (expected) 95% CL upper limit was placed at:
 B(H → inv) = 0.18 (0.10) for the 2012-2018 data taking periods

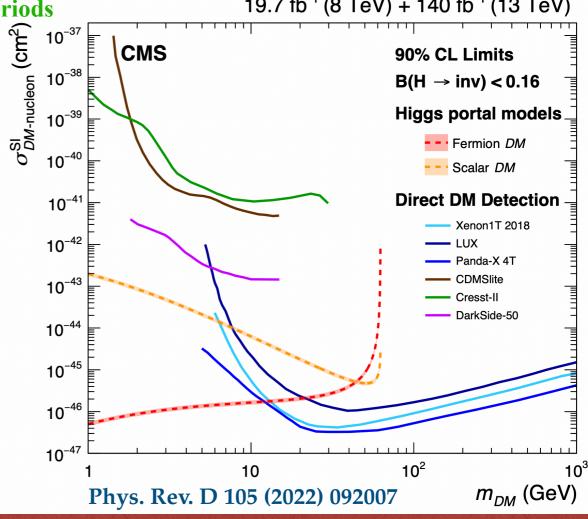
* The VBF H(invisible) measurement using full Run 2 data - new result (Phys. Rev. D 105 (2022) 092007)

Improvements to he analysis strategy:

- Addition of new VBF H(invisible) topology targeting triggers
 - Creating of a new, low E_T^{miss} , analysis category
- Addition of another (γ) control region

Helping with statistical precision of Z(ll) CRs

Brought ~20% gain in terms of signal sensitivity (when compared to 2016 strategy)


* No significant deviation from the SM was reported and the observed (expected) 95% CL upper limit was placed at: * $B(H \rightarrow inv) = 0.18 (0.10)$ for the 2012-2018 data taking periods 19.7 fb⁻¹ (8 TeV) + 140 fb⁻¹ (13 TeV)

*Reinterpretation of the results in terms of Higgs portal models:

• 90% CL upper limits on the spin-independent DM-

nucleon scattering cross section

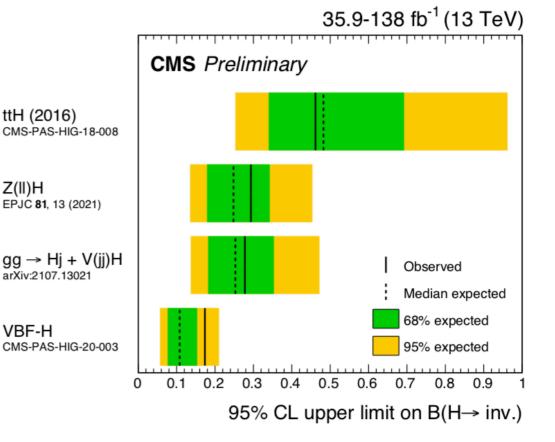
Assuming a scalar or fermion DM candidate

Summary & Conclusion

* These slides have summarised the recent studies of the invisible decays of the Higgs boson produced in a VBF topology from the CMS Collaboration:

First combination:

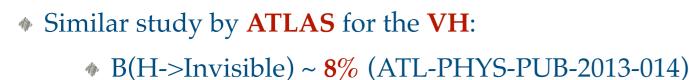
Focused on the Run 1 + early Run 2 measurements

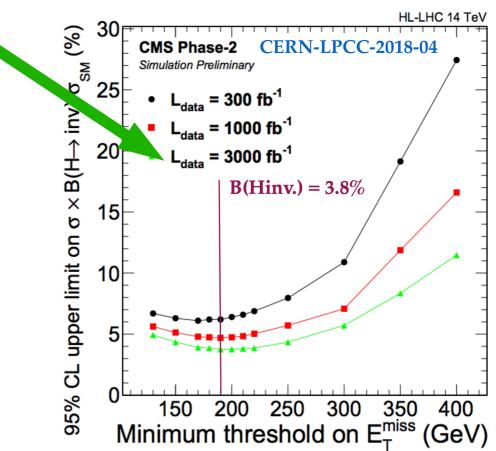

◆ Sets a limit on B(H → inv) at 0.19 (0.15) for the observed (expected) value

Measurements using the full Run 2 dataset:

- \clubsuit Z(ll)H(invisible): B(H → inv) = 0.29 (0.25)
- Mono V/mono Jet: B(H → inv) = 0.28 (0.25)

^{\text{W}} VBF H(invisible): B(H → inv) = 0.17 (0.11)


The last missing piece is the ttH full Run 2 search


Summary & Conclusion

***** VBF production mode presents the best sensitivity:

- A high-mjj category was used for this study
 - Cut-and-count approach
- The threshold on E_T^{miss} is varied from **130 to 400 GeV**
 - Likewise, the lower threshold on mjj is varied from 1000 to 4000 GeV
 - Upper limits on the B(H->Invisible) are place at the 95% using the CLs criterion

- Preparations for the upcoming phases are well underway!

BPU11

Thank you for your time!

BACKUP

Selection requirements

Observable	MTR	VTR	
Choice of pair	leading-p _T	leading-M _{ij}	
Leading (subleading) jet	$p_{\rm T} > 80 (40) { m GeV}, \eta < 4.7$	$p_{\rm T} > 140 (70) {\rm GeV}, \eta < 4.7$	
$p_{\mathrm{T}}^{\mathrm{miss}}$	$> 250 \mathrm{GeV}$	$160 < p_{\rm T}^{\rm miss} \le 250$	
min $\Delta \phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}},\vec{p}_{\mathrm{T}}^{\mathrm{jet}})$	> 0.5 rad	$> 1.8 \mathrm{rad}$	
$ \Delta \phi_{ii} $	< 1.5 rad	$< 1.8 \mathrm{rad}$	
$M_{ m jj}$	> 200 GeV	> 900 GeV	
$ p_{\rm T}^{\rm miss} - {\rm calo} p_{\rm T}^{\rm miss} / p_{\rm T}^{\rm miss}$	< 0.5		
Leading/subleading jets $ \eta < 2.5$	NHEF < 0.8, CHEF > 0.1		
HF-noise jet candidates	0 (see Table ??)		
$\tau_{\rm h}$ candidates	$N_{\tau_{\rm b}} = 0$ with $p_{\rm T} > 20$ GeV, $ \eta < 2.3$		
b quark jet	$N_{jet} = 0$ with $p_T > 20$ GeV, DeepCSV Medium		
$\eta_{j1} \times \eta_{j2}$	< 0		
$ \Delta \eta_{jj} $	> 1		
Muons (electrons)	$N_{\mu,e} = 0$ with $p_T > 1$	10 GeV, $ \eta < 2.4 (2.5)$	
Photons	$N_{\gamma} = 0$ with $p_{\rm T} > 15$ GeV, $ \eta < 2.5$		

Likelihood function

$$\begin{aligned} \mathcal{L}(\mu, \kappa^{\nu\overline{\nu}}, \boldsymbol{\theta}) &= \prod_{i} P\left(d_{i} \middle| B_{i}(\boldsymbol{\theta}) + Z_{i}(\kappa_{i}^{\nu\overline{\nu}}) + W_{i}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta}) + \mu S_{i}(\boldsymbol{\theta})\right) \\ &\prod_{i} P\left(d_{i}^{CR} \middle| B_{i}^{CR}(\boldsymbol{\theta}) + V_{i}^{CR, \text{strong}}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta}) + V_{i}^{CR, \text{VBF}}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta})\right) \right) \\ &\prod_{j} P(\theta_{j}), \end{aligned}$$
(4)
$$Z_{i}(\kappa_{i}^{\nu\overline{\nu}}) = (1 + Z_{i}^{\frac{\text{VBF}}{\text{strong}}})\kappa_{i}^{\nu\overline{\nu}}, \\ W_{i}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta}) = (f_{i}^{W/Z, \text{strong}}(\boldsymbol{\theta}) + Z_{i}^{\frac{\text{VBF}}{\text{strong}}}f_{i}^{W/Z, \text{VBF}}(\boldsymbol{\theta}))\kappa_{i}^{\nu\overline{\nu}}, \\ V_{i}^{CR, \text{strong}}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta}) = C_{i}^{CR, \text{strong}}(\boldsymbol{\theta})R_{i}^{CR, \text{strong}}(\boldsymbol{\theta})\kappa_{i}^{\nu\overline{\nu}}, \\ V_{i}^{CR, \text{VBF}}(\kappa_{i}^{\nu\overline{\nu}}, \boldsymbol{\theta}) = C_{i}^{CR, \text{VBF}}(\boldsymbol{\theta})Z_{i}^{\frac{\text{VBF}}{\text{strong}}}R_{i}^{CR, \text{VBF}}(\boldsymbol{\theta})\kappa_{i}^{\nu\overline{\nu}}, \end{aligned}$$

Uncertainties

Source of uncertainty	Ratios	Uncertainty vs. <i>M</i> _{ii}			
Theoretical uncertainties					
Ren. scale V+jets (VBF)	Z_{SR}/W_{SR}	7.5%			
Ren. scale V+jets (strong)	Z_{SR}/W_{SR}	8.2%			
Fac. scale V+jets (VBF)	Z_{SR}/W_{SR}	1.5%			
Fac. scale V+jets (strong)	Z_{SR}/W_{SR}	1.3%			
PDF V+jets (strong)	Z_{SR}/W_{SR}	0%			
PDF V+jets (VBF)	Z_{SR}/W_{SR}	0%			
NLO EWK corr. V+jets (strong)	Z_{SR}/W_{SR}	0.5%			
Ren. scale γ +jets (VBF)	Z_{SR}/γ_{CR}	6–10%			
Ren. scale γ +jets (strong)	Z_{SR}/γ_{CR}	6–10%			
Fac. scale γ +jets (VBF)	Z_{SR}/γ_{CR}	2.5%			
Fac. scale γ +jets (strong)	Z_{SR}/γ_{CR}	2.5%			
PDF γ +jets (strong)	Z_{SR}/γ_{CR}	2.5%			
PDF γ +jets (VBF)	Z_{SR}/γ_{CR}	2.5%			
NLO EWK corr. γ +jets	Z_{SR}/γ_{CR}	3%			
Exp	erimental uncertainties				
Muon id. eff.	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	pprox 0.5% (per lepton)			
Muon iso. eff.	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	pprox 0.1% (per lepton)			
Electron reco. eff.	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	$\approx 0.5\%$ (per lepton)			
Electron id. eff.	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	pprox 1% (per lepton)			
Photon id. eff.	Z_{SR}/γ	5%			
Muon veto	$Z_{SR}/W_{SR}, W_{CR}/W_{SR}$	pprox 0.5%			
Electron veto (reco)	$Z_{SR}/W_{SR}, W_{CR}/W_{SR}$	pprox 1.5 (1)% for VBF (strong)			
Electron veto (id)	$Z_{SR}/W_{SR}, W_{CR}/W_{SR}$	\approx 2.5 (2)% for VBF (strong)			
au veto	$Z_{SR}/W_{SR}, W_{CR}/W_{SR}$	pprox 1%			
Electron trigger	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	pprox 1%			
$p_{\rm T}^{\rm miss}$ trigger	$Z_{CR}/Z_{SR}, W_{CR}/W_{SR}$	pprox 2%			
Photon trigger	Z_{SR}/γ	1%			
Jet energy scale	Z_{SR}/W_{SR}	1–2%			
	W_{CR}/W_{SR}	1.0 - 1.5%			
	$Z_{CR}/Z_{\nu\nu}$	1%			
	Z_{SR}/γ	3%			
Jet energy resolution	Z_{SR}/W_{SR}	1.0-2.5%			
	W_{CR}/W_{SR}	1.0 - 1.5%			
	Z_{CR}/Z_{SR}	1%			
	Z_{SR}/γ	1-4%			

Uncertainty breakdown

Current of another atic uncontainties	Impact on $\mathcal{B}(H \to inv)$		
Group of systematic uncertainties	Observed	Expected	
Theory	$+0.026 \\ -0.025$	± 0.024	
Simulated event count	± 0.022	$^{+0.021}_{-0.022}$	
Triggers	$^{+0.018}_{-0.019}$	± 0.018	
Jet calibration	$+0.014 \\ -0.012$	± 0.011	
QCD multijet mismodelling	± 0.012	± 0.013	
Leptons/photons/b-tagged jets	$^{+0.011}_{-0.010}$	$+0.009 \\ -0.010$	
Integrated luminosity/pileup	± 0.004	± 0.004	
Other systematic uncertainties	$^{+0.013}_{-0.009}$	± 0.009	
Statistical uncertainty	± 0.028	± 0.028	

***** During the 2017/18 data taking period, there were several detector related issues affecting this analysis:

The HEM problem:

- A section of the HCAL endcap calorimeter was not functional during part of the 2018 era
- * Inability to properly identify electrons / photons in the region $\eta < -1.39$ and $-1.6 < \phi < -0.9$
 - Mitigated by including specific selection criteria on electrons
- A high source of E_T^{miss} in SR in affected phi slice due to the lost tracks
 - Mitigated by placing a removal selection requirement the affected E_T^{miss} phi region

WHF noise:

- * Appearance of jet "horns" (large data to MC discrepancy) for $|\eta| \sim 3.0$
- * HF jet shape variable selection introduced in order to battle it
- Required a data driven estimation of the multijet HF noise by inverting one selection requirement