

Tribological Properties of Selected Vanadium Oxide Stoichiometries Studied with Reactive Molecular Dynamics

Dr Miljan Dašić

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade

BPU11 CONGRESS

Serbian Academy of Sciences and Arts

1st September 2022

A) Introduction

A1) Overview of vanadium-doped hard coatingsA2) Our study on vanadium oxide lubricantsA3) Methods applied and simulation setup

B) Key results

- B1) Tribological properties of V_xO_y lubricants
 - B1.1) Sliding force F_x vs. applied normal load F_z B1.2) Coefficient Of Friction (COF) and offset F_x^0
- B2) Structural analysis of V_xO_y lubricants

 $\begin{array}{l} \text{B2.1) Coordination numbers (CN) of V, O, V^* \\ \text{B2.2) Bond (V-O) length} \\ \text{B2.3) Tribological properties-structure relation: } F_x \, vs. \, CN_v \end{array}$

C) <u>Conclusions</u>

Overview of major types of lubricants

Friction and wear cause a loss of approximately 1/4 of the global energy production \rightarrow serious need for using lubricants to decrease friction and prevent wear

• <u>Depending on operating conditions (temperature/pressure, presence of oxygen):</u>

(1) non-demanding conditions (not high temperature/pressure, oxygen present)

→ liquid lubricants:

- water
- petroleum-based oils
- ionic liquids

(2) demanding conditions (high temperature/pressure, vacuum or oxygen present)

→ solid lubricants:

- carbon-based (graphite, DLC (diamond-like carbon) coatings)
- TMD (transition metal dichalcogenides)
- However, both carbon-based and TMD solid lubricants degrade in conditions of high temperature in oxidative environments due to their oxidation!

 Achieving effective lubrication under high temperature/pressure and under oxidation is highly relevant for various industrial applications (e.g., turbomachinery – turbines and compressors, cutting tools etc.)

\rightarrow design of adequate coatings is needed

• <u>Solution:</u>

\rightarrow oxidation-resistant hard coatings

- Those are binary of ternary films: Cr-N, Ti-N, Cr-Al-N, Ti-Al-N doped with a lubricious agent: vanadium (V), silver (Ag)
- <u>Operation of vanadium-doped hard coatings:</u>
 - \rightarrow Vanadium diffuses to the coating's surface, reacts with oxygen and forms a lubricious oxide with a stoichiometry generally labeled as V_xO_y
- Vanadium oxides melt at relatively low temperatures (under 700°C under atmospheric pressure in case of V₂O₅) enabling liquid lubrication

- <u>Study's main goal:</u>

 \rightarrow research on tribological properties of selected V_xO_y lubricants

- Length-scale and time-scale: [nm] and [ns]
- Number of atoms:
 - vanadium: $N_v = 144$
 - oxygen: $N_o = y/x * N_v$
- Taking into account length- and time- scale, number of atoms, as well as the need for treating chemical bonding between the atoms (i.e., atomic reactivity)

 \rightarrow adequate method: reactive molecular dynamics with ReaxFF

• We investigated tribological properties of five different stoichiometries V_xO_y, selected based on available experimental studies:

V₂O₃, V₃O₅, V₈O₁₅, V₉O₁₇, VO₂

- We used the "*Chenoweth et al.*" ReaxFF parametrization [*J. Phys. Chem. A* 2008, 112, 5, 1040–1053]
- All reactive molecular dynamics simulations were run using: → reax/c package of the LAMMPS code
- <u>Study parameters:</u>
 - stoichiometry $V_x O_y$
 - applied normal load $F_z = \{0, 1, 2, 3, 4\}$ [GPa]
 - temperature T = {600, 800, 1000} [K]

Configuration snapshots (V atoms and O atoms)

- Simulation segments:
- Randomly arranged V and O atoms (according to V_xO_y) between two fixed V_2O_5 layers
- Melting (at target normal load F_z) and quenching (to target temperature T)
- Melt-quench gives amorphous $V_xO_y \rightarrow$ system equilibration (at target temperature T)
- Sliding of the top fixed V_2O_5 layer (at target sliding velocity V_x)

Averaging of the sliding force *F_x*

- Time evolution of the sliding force F_x acting on top V_2O_5 layer (case: stoichiometry V_3O_5 /pressure 4 GPa/temperature 1000 K) during 2 ns of sliding
- (a) blue line: simulation data red line: moving average at 1000 points orange line: average value of moving average curves for 5 independent initial random configurations (run 1 to run 5)
- (b) averaging of moving average curves in case of 5 independent runs orange line is mutual for panels (a) and (b)

Tribological properties of V_xO_y lubricants

Structural analysis of V_xO_y - RDF

Example:

Comparison of RDF (Radial Distribution Function) for a solid, liquid and gas

We computed RDF regarding V-V, O-O, V-O and total (their sum)

Structural analysis of V_xO_y – Coordination Numbers (CN)

Structural analysis of V_xO_y – Bond (V-O) length

Tribological properties-structure relation – F_x vs. CN_v

- Considering different oxides with a fixed $N_v = 144$, and N_o computed according to stoichiometry, models realistic conditions of oxidative environments with different content of oxygen
- Tribocontact of two fixed V₂O₅ layers and thermalized V_xO_y lubricant between them:

 → Under high temperature/pressure all V_xO_y lubricants are amorphous, which is a preferable structural property, since they can effectively provide lubrication and friction reduction
- Effectivity of V_xO_y lubricants: how low is COF and does it depend on stoichiometry?
- → Each of the considered V_xO_y stoichiometries enables lubrication with a low friction coefficient (COF < 0.2 at T = 800 and 1000 K; COF ~ 0.2 at T = 600 K)
- → We obtained that COF decreases with increase of temperature T and it weakly depends on stoichiometry V_xO_y
- We explained the dependence of offset F_x^0 (related to the adhesion component of friction force) on stoichiometry V_xO_y with structural analysis based on the coordination number CN_{v^*}

Open MSc/BSc and prestigeous PhD Horizon Europe positions

Looking for collaborators interested in new technologies for energy conversion.

Industrial PhD project (>50% time in industry) with major <u>car & fuel cell manufacturers</u>.

Topic: models for fuel cell membrane

Candidates outside Serbia welcome!

<u>Funding framework:</u> EU Doctoral Network (2023-2028)

Opening: February 2023. Deadline: May 2023. Start date: October 2023.

Location: Belgrade (Serbia) / Weinheim (Germany) MSc/BSc projects for Serbian students with major <u>R&D laboratories</u>.

<u>Topic:</u> novel surfaces & magnetic materials, python coding and use of super computers

<u>Funding framework:</u> EU RISE project (2021-2025)

Deadline: open Start date: anytime

Location: Belgrade (Serbia) / Zaragoza (Spain) / / Nancy (France) / Valparaizo (Chile)

contact: igor@ipb.ac.rs (expressions of interest); mdasic@ipb.ac.rs website: ultimate-i.eu

Tribological Properties of Selected Vanadium Oxide Stoichiometries Studied with Reactive Molecular Dynamics

THANK YOU FOR YOUR ATTENTION!

ХВАЛА НА ПАЖЊИ!