Physics highlights and challenges: particle physics

Paris Sphicas CERN & NKUA BPU11 (11th International Conference of the Balkan Physical Union) Belgrade, Aug 29, 2022

- **Introduction**
 - How we got to here: a brief history of the past four decades
- Where we stand & the imminent future (next 10-15 years)
 - The (fundamental?) scalar sector of the SM
 - Direct searches for BSM physics
- Dark Matter
 - Interplay of Direct and Indirect (collider) searches
- Physics of Flavor
 - **Quark sector: CP violation, rare decays of K and B mesons**
 - Neutrinos: New source of CP violation(?) Mass ordering? Nature? New particles/new interactions?
- Pseudo-summary

The Standard Model and colliders

How we got to here

A very (very...) brief summary

pp collisions :== parton-parton collisions + extra debris

perpendicular to the electron momentum plotted versus the

WITH JETS

The similarly punctual cousin: the Z boson

The Z boson was there as well
 Also at the right time
 And at the right mass (91 GeV)

 Tremendous (other) physics output from the 10 years of the SPS and the UA/UA2 experiments

End of the 80s, beginning 90s:

Passing the baton to (a) LEP (CERN) & SLC (Stanford) and (b) The Tevatron (Fermilab)

LEP & SLD Overview: Luminosity, Energy, Precision

LEP: Conventional collider e⁺e⁻ ring

Energy upgradeable; measurable; Four detectors (A,D,L,O); Large luminosity: 20 Million Z events. But.... Energy limited by synchrotron radiation loss (~γ⁴). At Z: 3 GeV/turn (replenished by the RF system)

PEP @ SLAC: complementary to LEP

First (high √s) e⁺e⁻ "linear" collider (+ arcs); Small transverse beam sizes (& beam pipe) Reduced luminosity; Only one expt (SLD): 0.35 Million Z events BUT: 73% electron beam polarization;

HEP: current perspectives and future challenges

$e^+e^- \rightarrow Z \rightarrow q\bar{q} \rightarrow hadrons$

The LEP legacy

End of 80s, beginning of 90s: Tevatron

The Tevatron discovery: the top quark (I)

- The crowning moment for the Tevatron experiments: the observation of the Top quark
 - The most complicated signature up to that point in time; leptons, jets, missing transverse energy, and b-tagging!

LEP and the Tevatron were huge successes

The word "success" does not do justice Yet... the Higgs Boson did not show up

And the Higgs... is extremely important:

the entire Standard Model of Particle Physics is based on the Brout-Englert-Higgs mechanism to

give masses to the W & Z bosons, while leaving the photon massless; bonus: it also gives masses to the fermions!

A machine for EWSB

- The Large Hadron Collider (LHC)
 - Use existing LEP tunnel at CERN
 - Replace: e by p; increase bending power (with superconducting magnets)
 - At the time (1990s): mass of the Higgs boson was completely unknown. But theoretical arguments said M_H<1 TeV (1000 GeV).

In July 2012: a new particle with mass ≈125 GeV is seen! It decays to γγ, ZZ → it's a boson (spin=0 or 2)

HEP: current perspectives and future challenges

BPU11, Belgrade: Aug 29, 2022

 $L(m_H, \theta)$

when accounting for the per-event resolution responding effect.

124.92^{+0.21}_{-0.20} GeV. Figure 4 shows the inclusive $m_{4\ell}$ Teasing the estimate of the is extracted by Storming a similar control is the likelihood fit to the sixter Shakes e vaccuum particle... fit to the $H \rightarrow ZZ^*$

eceived suffer: four BAK perspectives and full re KABIEr ces Compute

SM @ the highest E; EWSB ("Higgs" sector) (I)

HEP: current perspectives and future challenges

The overall picture of the measured/seen Higgs couplings

A new kind of "force", with *non-universal* couplings to matter (!)

A particle like no other!

Where we stand now

A very brief summary

Standard Model of Particle Physics

Highest priority: understand this central and most strange element

Putting it all together: SM reigns supreme

The discovery of the Higgs boson was the ultimate crown on the Standard Model of Particle Physics

With the discovery of the Higgs boson, the Standard Model (SM) is now "complete": its full particle content has been observed

The SM provides a remarkably accurate description of experiments with and without high-energy accelerators. At the cost of 26 parameters determined by experiment...

With the physics of the very small [thought to be] understood at energy scales of \geq 100 GeV, the situation is reminiscent of previous times in history when our knowledge of nature was deemed to be "complete"

Lord Kelvin (1900): There is nothing new to be discovered in physics now. All that remains is more and more precise measurement.

1905-1920: Relativity, Quantum mechanics...

The magic of the Higgs boson mass

Quantum Mechanics: ultimate destructor of small numbers (in nature) not protected by some symmetry (thus "law") Higgs boson: the ultimate example; spinless \rightarrow zero cost from mass correction

$$m^{2}(p^{2}) = m_{o}^{2} + \frac{\int_{p}^{J=1}}{p} + \frac{\int_{p}^{J=1/2}}{p} + \frac{\int_{p}^{J=0}}{p} m^{2}(\Lambda^{2}) + Cg^{2} \int_{p^{2}}^{\Lambda^{2}} dk^{2}$$

P.A.M Dirac

An immense coincidence of googlic sizes? Probably, simply some additional (i.e. New) physics on the way to 10¹⁹ GeV

We know there is new physics already

Plus neutrinos and their masses!

The hunt for "New Physics"

Despite finding the last missing piece of the SM, there is plenty of room for NP (beyond the magic of the M_H-m_t mass)

Some real and some virtual reasons to believe in new physics

Real reasons: dark matter & v masses Virtual reasons: naturalness + matter–antimmater asymmetry in the universe...

Solutions to the hierarchy problem

Solution #1: a composite Higgs

H: bound state (e.g. due to some new strong interaction)

Solution #2: supersymmetry

- Partners for ALL SM particles, spin different by ¹/₂
- Presumably broken symmetry (since partners unseen)
- Solution #3: little Higgs

 H: pseudo-Goldstone boson of Ultimate Theory; just another effective theory, e.g. valid to ~10 TeV. Loops cancel by particles of same spin (so need to introduce these particles)

Solution #4: extra dimensions

 N-dim space; gravity propagates in all dims, SM only in "our" 3 dims; e.g. warped extra dimension can explain weakness of G

All of these "solutions" introduce either deviations in tails or new particles, with masses whose "natural" values should be O(few TeV)

HEP: current perspectives and future challenges

What we have been looking for (mainly)

The never-ending search for SUSY... (and it's not like we didn't look for them)

ATLAS SUSY Searches* - 95% CL Lower Limits

ATLAS Preliminary

	Model	Signature	∫ <i>L dt</i> [fb ⁻	Mass limit	Reference
Inclusive Searches	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$	0 e, µ 2-6 jets mono-jet 1-3 jets	E_T^{miss} 139 E_T^{miss} 36.1	q̃ [1×, 8× Degen.] 1.0 1.85 q̃ [8× Degen.] 0.9 m	m($\tilde{\chi}_1^0$)<400 GeV 2010.14293 (\tilde{q})·m($\tilde{\chi}_1^0$)=5 GeV 2102.10874
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \bar{q} \tilde{\chi}_1^0$	0 e, µ 2-6 jets	E_T^{miss} 139	ğ 2.3 ğ Forbidden 1.15-1.95	m($\tilde{\mathcal{K}}_{1}^{0}$)=0 GeV 2010.14293 m($\tilde{\mathcal{K}}_{1}^{0}$)=1000 GeV 2010.14293
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\bar{q}W\tilde{\chi}_{1}^{0}$	1 e, µ 2-6 jets	139	ĝ 2.2	m($\tilde{\ell}_1^0$)<600 GeV 2101.01629
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell \ell)\tilde{\chi}_{1}^{0}$	ee, μμ 2 jets	E_T^{miss} 36.1	<i>ğ</i> 1.2 m(§)-m(χ̃ ⁰ ₁)=50 GeV 1805.11381
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqWZ\tilde{\chi}_{1}^{0}$	0 e,μ 7-11 jets SS e,μ 6 jets	E _T 139 139	ž 1.97 ž 1.15 m(ž	m($\tilde{\chi}_{1}^{0}$) <600 GeV 2008.06032)-m($\tilde{\chi}_{1}^{0}$)=200 GeV 1909.08457
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 e, μ 3 b SS e, μ 6 jets	E _T ^{miss} 79.8 139	ž 2.25 ž 1.25 m(ž	m(X ⁰ ₁)<200 GeV ATLAS-CONF-2018-041 I-m(X ⁰ ₁)=300 GeV 1909.08457
3 rd gen. squarks direct production	$\tilde{b}_1 \tilde{b}_1$	0 e,µ 2 b	E_T^{miss} 139	δ₁ 1.255 δ₁ 0.68 10 GeV<Δ	$m(\tilde{k}_1^0) < 400 \text{ GeV}$ 2101.12527 $m(\tilde{b}_1, \tilde{k}_1^0) < 20 \text{ GeV}$ 2101.12527
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_2^0 \rightarrow b h \tilde{\chi}_1^0$	0 e,μ 6 b 2 τ 2 b	E_T^{miss} 139 E_T^{miss} 139	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{ll} m(\tilde{\chi}_1^0){=}100 \mbox{ GeV } & 1908.03122 \\ eV, m(\tilde{\chi}_1^0){=}0 \mbox{ GeV } & \mbox{ ATLAS-CONF-}2020{-}031 \end{array}$
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_1^0$	0-1 $e, \mu \ge 1$ jet	E_T^{miss} 139	ĩ ₁ 1.25	m(t ⁰ ₁)=1 GeV 2004.14060,2012.03799
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$	1 e, µ 3 jets/1 b	E_T^{miss} 139	71 Forbidden 0.65	m(X ₁ ⁰)=500 GeV 2012.03799
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 bv, \tilde{\tau}_1 \rightarrow \tau G$	1-2 τ 2 jets/1 b	E_T^{miss} 139	r ₁ Forbidden 1.4	m(ī ₁)=800 GeV ATLAS-CONF-2021-008
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{X}_1' / \tilde{c} \tilde{c}, \tilde{c} \rightarrow c \tilde{X}_1'$	0 e,μ 2 c 0 e,μ mono-jet	E_T^{miss} 36.1 E_T^{miss} 139	² ⁷ ₁ 0.55 m(l	m(ℓ ₁ [°])=0 GeV 1805.01649 ,,ĉ)-m(ℓ ₁ [°])=5 GeV 2102.10874
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow t \tilde{\chi}_2^0, \tilde{\chi}_2^0 \rightarrow Z/h \tilde{\chi}_1^0$	1-2 e, µ 1-4 b	E_T^{miss} 139	<i>ī</i> ₁ 0.067-1.18	m(X ⁰ ₂)=500 GeV 2006.05880
	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	3 e,µ 1 b	E _T ^{miss} 139	\tilde{t}_2 Forbidden 0.86 m(\tilde{t}_1^0)=360 GeV, m(\tilde{t}_1))-m(\tilde{x}_1^0)= 40 GeV 2006.05880
EW direct	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via WZ	Multiple ℓ /jets $ee, \mu\mu \ge 1$ jet	E_T^{miss} 139 E_T^{miss} 139	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\tilde{\chi}_{1}^{0}$)=0, wino-bino 2106.01676, ATLAS-CONF-2021-022 5 GeV, wino-bino 1911.12606
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}$ via WW	2 e,µ	E_T^{miss} 139	x ₁ [±] 0.42	x ⁰ ₁)=0, wino-bino 1908.08215
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via Wh	Multiple <i>l</i> /jets	E_T^{miss} 139	$\tilde{\chi}_{1}^{*}/\tilde{\chi}_{2}^{0}$ Forbidden 1.06 m($\tilde{\chi}_{1}^{0}$)=7	0 GeV, wino-bino 2004.10894, ATLAS-CONF-2021-022
	$\tilde{\chi}_1^* \tilde{\chi}_1^+$ via $\tilde{\ell}_L / \tilde{\nu}$	2 e,µ	E_T^{miss} 139	$\hat{\chi}_{1}^{\pm}$ 1.0 m($\hat{\ell}, \hat{\nu}$)=	$J.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$ 1908.08215
	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_1^0$	27	E _T 139	τ [τ _L , τ _{R,L}] 0.16-0.3 0.12-0.39	m(X ₁)=0 1911.06660
	$\ell_{L,R}\ell_{L,R}, \ell \rightarrow \ell \chi_1^{\circ}$	$2 e, \mu$ 0 jets $ee, \mu\mu$ ≥ 1 jet	$E_T^{\text{miss}} = 139$ $E_T^{\text{miss}} = 139$	<i>ἰ</i> 0.7 <i>ἔ</i> 0.256 m(m($\tilde{\chi}_1^{*}$)=0 1908.08215 $\tilde{\chi}_1^{*}$ -m($\tilde{\chi}_1^{0}$)=10 GeV 1911.12606
	$\tilde{H}\tilde{H}, \tilde{H} \rightarrow h\tilde{G}/Z\tilde{G}$	$0 e, \mu \ge 3 b$	E _T 36.1	Ĥ 0.13-0.23 0.29-0.88	$BR(\tilde{\chi}_{j}^{0} \rightarrow h\tilde{G})=1$ 1806.04030
		$4 e, \mu$ 0 jets , $0 e, \mu > 2$ large jets	E_T^{miss} 139 E^{miss} 139	μ 0.55 μ 0.45.0.93	$BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ 2103.11684 $BR(\tilde{\chi}_{1}^{0} \rightarrow Z\tilde{G})=1$ ATLAS_CONE_2021.022
			L _T 135	n 0.450.85	
o g	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk 1 jet	E_T^{miss} 139	$ \tilde{\chi}_{1}^{+} = 0.66 $ $ \tilde{\chi}_{1}^{+} = 0.21 $	Pure Wino ATLAS-CONF-2021-015 Pure higgsino ATLAS-CONF-2021-015
ng-live	Stable g R-hadron	Multiple	36.1	ž 2.0	1902.01636,1808.04095
	Metastable \tilde{g} R-hadron, $\tilde{g} \rightarrow ga \tilde{\chi}_{1}^{0}$	Multiple	36.1	ğ [τ(ğ) =10 ns, 0.2 ns] 2.05 2.4	m(t ⁰)=100 GeV 1710.04901,1808.04095
Lo D	$\tilde{\ell}\tilde{\ell}, \tilde{\ell} \rightarrow \ell\tilde{G}$	Displ. lep	E_T^{miss} 139	<i>ε̃,μ̃</i> 0.7	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812
				τ 0.34	$\tau(\tilde{\ell}) = 0.1 \text{ ns}$ 2011.07812
RPV	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{\pm} \rightarrow Z\ell \rightarrow \ell\ell\ell$	3 e,µ	139	$\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{1}^{0}$ [BR(Z τ)=1, BR(Z e)=1] 0.625 1.05	Pure Wino 2011.10543
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\mp}/\tilde{\chi}_{2}^{0} \rightarrow WW/Z\ell\ell\ell\ell\nu\nu$	4 e, μ 0 jets	E_T^{miss} 139	$\bar{\chi}_{1}^{\pm}/\bar{\chi}_{2}^{0} [\lambda_{i33} \neq 0, \lambda_{12k} \neq 0] \tag{0.95}$	m($\tilde{\chi}_1^0$)=200 GeV 2103.11684
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow qqq$	4-5 large jets	36.1	$\tilde{g} = [m(\tilde{x}_1^0)=200 \text{ GeV}, 1100 \text{ GeV}]$ 1.3 1.9	Large X''_112 1804.03568
	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0} \rightarrow tbs$	Multiple	36.1	$t [X_{323}^{\prime} = 20.4, 10.2]$ 0.55 1.05 $m(\tilde{X}_{1}^{\prime}) = 2$	00 GeV, bino-like ATLAS-CONF-2018-003
	$tt, t \rightarrow b\chi_1^-, \chi_1^- \rightarrow bbs$	$\geq 4b$	139	r Forbidden 0.95	m(X ₁)=500 GeV 2010.01015
	$I_1I_1, I_1 \rightarrow bs$ $\tilde{I}_1\tilde{I}_1, \tilde{I}_2 \rightarrow a\ell$	2 jets + 2 p	36.7	71 [qq, bs] 0.42 0.61	1710.07171
	$i_1i_1, i_1 \rightarrow qt$	1μ DV	36.1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$)=100%, cos0 _i =1 2003.11956
	$\tilde{\chi}_{1}^{\pm}/\tilde{\chi}_{2}^{0}/\tilde{\chi}_{1}^{0}, \tilde{\chi}_{1,2}^{0} \rightarrow tbs, \tilde{\chi}_{1}^{+} \rightarrow bbs$	1-2 e, μ ≥6 jets	139	${ar{\chi}}^0_1$ 0.2-0.32	Pure higgsino ATLAS-CONF-2021-007
*Only a selection of the available mass limits on new states or 10^{-1} 1 Mass scale ITeV					
nhó	nomona is shown. Many of the	limite are based on		indes s	

phenomena is shown. Many of the limits on hew states of simplified models, c.f. refs. for the assumptions made.

The High-Luminosity LHC (HL-LHC)

HL-LHC in a nutshell Some physics projections

From the LHC to High-Luminosity LHC (HL-LHC)

HEP: current perspectives and future challenges

HL-LHC challenges

Annual dose at HL-LHC: similar to total dose from LHC start to LS3

Key to physics: maintain detector performance in the presence of much higher pileup (140-200!)

Upgrade several detector components (trackers, calorimeters, redesign some electronics, new detector technologies, Trigger and DAQ

Medium-term Higgs physics: the LHC/HL-LHC program

H width to invisible: h(125) \rightarrow XX. Includes BSM decays and rare SM decays: \leq 4%

Long-term future: proposed machines

A very brief summary

EU Strategy: High-priority future initiatives

- A. An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:
 - the particle physics community should ramp up its R&D effort focused on advanced accelerator technologies, in particular that for high-field superconducting magnets, including high-temperature superconductors;
 - Europe, together with its international partners, should investigate the technical and financial feasibility of a future hadron collider at CERN with a centre-of-mass energy of at least 100 TeV and with an electron-positron Higgs and electroweak factory as a possible first stage. Such a feasibility study of the colliders and related infrastructure should be established as a global endeavour and be completed on the timescale of the next Strategy update.
 - The timely realisation of the electron-positron International Linear Collider (ILC) in Japan would be compatible with this strategy and, in that case, the European particle physics community would wish to collaborate.

Collider Crib sheet

- Linear collider with high-gradient superconducting acceleration
- Ultimate: 0.5-1(?) TeV
- To secure (...) funding: reduce cost by starting at 250 GeV (H factory)

• CLIC (CERN):

- Linear collider with high gradient normal-conducting acceleration
- □ Ultimate: multi-TeV (3) e+e⁻ collisions
- Use technology to overcome challenges
- Stages, for physics and funding

FCC-ee/FCC-hh (CERN):

- Protons to extend energy frontier
- 100 km ring with 16T magnets
- Use FCC-hh tunnel for e+e- collider
- Technology for ee: "standard"
- CEPC/SppC
 - Essentially an FCC-ee, then hh with (a) more conservative luminosity estimates and (b) in China
- outliers:
 - "Low-field" (7T) magnets @ FCC (?)
 - Muon Collider (???)

The Higgs sector: from the HL-LHC to the "future"

Precision Observables & Searches: examples

 m_* [TeV]

 m_* [TeV]

HEP: current perspectives and future challenges

- An experimental fact & yet, still a total mystery
 - And masses span over 80 orders of magnitude
- Nightmare scenario: totally dark

Only Gravity to play wil^{European Strategy}

More promising: some shade of grey

Thermal WIMPs

18
DM: direct detection experiments

HEP: current perspectives and future challenges

drift time (depth)

Edrift

DM: Classic WIMPs

Two (SUSY) "extremes", pure Wino, pure Higgsino
 Main "tools": disappearing track, propagator modifications

For small Δm , soft π^{\pm} ... p/e^{+} χ^{\pm} χ^{0} χ^{\pm} χ^{0} π^{\pm} χ^{0}

EWKinos in loop change prop (W, Y parameters)

HEP: current perspectives and future challenges

Scalar mediator: Higgs portal and

A collider discovery will need confirmation from DD/ID for cosmological origin A DD/ID discovery will need confirmation from colliders to understand the nature of the interaction

> A future collider program that optimizes sensitivity to invisible particles coherently with DD/ID serves us well. Need maximum overlap with DD/ID!

10-

Collider limits at §

10-31

10-32

10

g., = 1, g = 1

10²

All limits at 95% CL

103

104

m_{DM} [GeV]

European Str

HEP: current perspectives and future challenges

10-38

 10^{-39}

 10^{-40}

 10^{-4}

10⁻⁴²

10⁻⁴⁰

 10^{-4}

10⁻⁴⁵

10

 $10^{-4^{-1}}$

10⁻⁴⁸

 10^{-49}

10⁻⁵⁰

 10^{-5}

HL-LHC, 14 Te

HE-LHC. 27 TeV

CC-hh, 100 TeV, 1 ab

100 TeV

10

Scalar model, Dirac DM

 $g_{DM} = 1, g_{SM} = 1$

 $\sigma_{\rm SI}$ (χ -nucleon) [cm²]

Physics of Flavor

Neutrinos Quarks Charged Leptons

Super-brief Intro: from hopeless to lucky strike(s)

From invisible particle (σ ~10⁻⁴⁴cm² @ E_v~2 MeV) to major source of physics: From Pontecorvo's few/day/ton with ~10¹¹v/cm²/s to \rightarrow PMNS matrix & CP violation(?!?!)

$$P(\nu_{\alpha} \to \nu_{\beta}) = \sin^2 2\theta \, \sin^2 \left(1.27 \frac{\Delta m^2 (\text{eV}^2) \, L(\text{km})}{E_{\nu}(\text{GeV})} \right) \quad P(\nu_{\alpha} \to \nu_{\alpha}) = 1 - P(\nu_{\alpha} \to \nu_{\beta})$$

SuperK, SNO: large mixing; good Δm $\Delta m_{\rm sol}^2 \approx 7 - 8 \times 10^{-5} {\rm eV}^2$

> $\Delta m_{\rm sol}^2 \sim E_{\nu}({\rm MeV})/{\rm L}(100\,{\rm km})$ \rightarrow Reactors! \rightarrow KamLAND

IMB, Kamiokande, Soudan(2)... SuperK: large mixing; super Δm : $\Delta m_{atm}^2 \approx 2.5 \times 10^{-3} \text{eV}^2$

 $\Delta m_{\text{atm}}^2 \sim E_{\nu}(\text{MeV})/\text{L}(100 \text{ m}) = (\text{GeV})/(100 \text{ km})$ $\rightarrow \text{Accelerators!} \rightarrow \text{K2K}, \text{MINOS(+)}, \dots, \text{T2K}, \text{NOVA}$ + Short baselines: Daya Bay, RENO, ..., xBOONe

v physics: PMNS; 3x3 or 4x4? nature (Majorana or Dirac); mass ordering

HEP: current perspectives and future challenges

Neutrinos: Reactor experiments; Precision!

cea	Principle: θ_{13}	🗉 Lon	ies of m	easurer	nents I	have brou	ght us to a
1	$P(v_e \rightarrow v_e) = 1 - \sin^2(2\theta_{13}) \sin^2(\Delta m^2 L/E)$	"pro	ecision era"	solar	KamLAND Combined	3.5 DeepCore	atmospheric
0.8 > [°] 0.6 • • 0.4	Plear detector			sector interference Cl, Ga, SK interference SNO, Borexino interference KamLAND 4	90. 99% C.L. 0.2 0.3 0.4 sin ² θ ₁₂	3.0 1 2.5 1 0.999 CL 0.2 0.3 0.4 0.5 0.6 1 0.5 0.6 1 0.5 0.5 0.6 1 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	NO NO NO NO NO NO NO NO NO NO NO NO NO N
0.2	10^{1} 10^{2} 10^{3} 10^{4} L [m] ((E _v) = 3 MeV)			SBL reactors	Dayo Bay Dayo Bay No. 99% C.L.	1 1	NO T2K
Cea	The prized measurem			0.015	0.020 $0.025\sin^2 \theta_{13}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
			de Salas et al, a	arXiv:2006.11	237		M. Tortola ICHEP2020
	EH3 55		parameter	best fit $\pm 1\sigma$	3σ range		
		2 0.83	$\Delta m_{21}^2 \ [10^{-5} {\rm eV}^2]$	$7.50_{-0.20}^{+0.22}$	6.94 - 8.14	2.7%	
1	5 m 200 a raise 200 a raise 2	0.80 1 2 3 4 5 E _{vis} (h)	$ \Delta m_{31}^2 \ [10^{-3} \text{eV}^2] \ (\text{NO})$	$2.56^{+0.03}_{-0.04}$	2.46 - 2.65	rel	
	HII Ling Ao II NPE		$ \Delta m_{31}^2 \ [10^{-3} \text{eV}^2] \ (\text{IO})$	2.46 ± 0.03	2.37 – 2.55	1.2%	
	2 09 <u>1</u> 2 4 6 8 10 12 Prompt energy (MeV)		$\sin^2 \theta_{12} / 10^{-1}$	3.18 ± 0.16	2.71 - 3.70	5.2% e	3-5%
	Third lucky strike (in v phys)		$\sin^2 \theta_{23} / 10^{-1} (\text{NO})$	$5.66^{+0.16}_{-0.22}$	4.41 - 6.09	4.9%	
			$\sin^2 \theta_{23} / 10^{-1} (\text{IO})$	$5.66^{+0.18}_{-0.23}$	4.46 - 6.09	4.8% Pr	
J	$V_{P}^{\mu} = Im(U_{\mu3}U_{e3}^{*}U_{e2}U_{\mu2}^{*}) = (1/8) \times 10^{-10}$		$\sin^2 \theta_{13} / 10^{-2}$ (NO)	$2.225^{+0.055}_{-0.078}$	2.015 - 2.417	aint	
	$\times \sin 2\theta_{12} \sin 2\theta_{23} \sin 2\theta_{13} \cos \theta_{13} \sin \delta_{\rm CP}$		$\sin^2 \theta_{13} / 10^{-2} (IO)$	$2.250^{+0.056}_{-0.076}$	2.039 - 2.441	3.0%	
	$\approx 0.033 \sin \delta_{\rm CP} \ { m BUT} : J_{\rm CP}^{\rm q} \approx 3 \times 10^{-5}$		δ/π (NO)	$1.20\substack{+0.23\\-0.14}$	0.80 - 2.00	17%	
_			δ/π (IO)	1.54 ± 0.13	1.14 – 1.90	8%	

HEP: current perspectives and future challenges

 $V_{cb}V_{tb}^*$

 $V_{tb}V_{ud}V_{tb}V_{tb}V_{td}^{*}V_{tb}V_{ud}^{*}V_{td}V_{ud}V_{tb}V_{ub}^{*}=0$ $V_{ta}V_{tb}V_{ud}V_{tb}V_{ub$

HEP: current perspectives and future challenges

Pseudo-summary

Pseudosummary/Outlook

Extremely rich physics program ahead to understand the scalar sector

- □ The LHC and HL-LHC will get us to 3-5% couplings for the Higgs boson;
- All options for a future Higgs "factory" bring in $\sim O(10^{-2}-10^{-3})$ understanding of couplings.
- Important aspects: EWPO (needs next-gen Z factory) and top threshold.
 - Actually, the linear and circular options are quite complementary...
- **•** Fundamental scalar? Can probe it to 15-18 TeV.
- FCC-ee/hh combination has the largest direct reach to new particles/phenomena. From new particles to Higgs self-coupling to Dark Matter searches...
- Dark Matter:
 - Complementarity with indirect searches at colliders (and astroparticle expts); Next-gen colliders can cover the thermal WIMP scenario.
- Flavor Physics: neutrinos have all one could ask for (albeit it with small σ_{int}). But quark sector may hold the first genuine surprises(?)
 - In the next 5-10 years: could get very pleasant news on CP front. Definitive statement of mass hierarchy and CP from the full program (DUNE and HyperK).
 - Quark sector: the current situation will be resolved in the next five years.

Physics at hand, physics of the next decade, physics of the long-term future: remains fully exciting. Stay tuned!

Higgs boson issues

- The only (?!) spin-0 fundamental (?) particle
- What creates the infamous couplings to the leptons?
 - It's a new interaction! The only non-universal one (it's not a gauge interaction...), with a free parameter (Yukawa coupling) for each combination (worse for quarks mass matrix...)
 - What about them neutrinos?!?
- What protects its mass and sets it to the EWK scale when it should be at Λ_{pl} ?
 - There is only one dimensionfull variable in the SM Lagrangian: v=246 GeV (...!?...)
 - □ The rest of the SM is scale-free...
- And.... where is all that vaccum energy?
 Cosmological constant is > 10¹⁰⁰ times off.

"Turn on the LHC and... find Higgs & SUSY"

- ATLAS and CMS were designed to do this; they were "guaranteed" to find the Higgs – period; right away
 - In fact: SUSY is strongly produced, so will be observed first
 - For the "impatient": join SUSY physics group

HEP: current perspectives and future challenges

BPU11, Belgrade: Aug 29, 2022

The magic of the Higgs boson mass

- Quantum Mechanics: ultimate destructor of small numbers (in nature) that are not protected by some symmetry (thus "law")
- Higgs boson: the ultimate example
 Quadratic divergence in the Higgs mass

- H mass should be ~ 10¹⁹GeV
 - Yet, it lies at 125 GeV...
- Put differently: if cut off at Λ_{PL} , why $m_W \ll M_{Pl}$?
 - or, why is gravity (G~1/M_{PI}) so weak?

- Reminder of just two past applications of naturalness argument:
- Weisskopf (1939): "the selfenergy of charged particles obeying Bose statistics is found to be quadratically divergent...,"

 \rightarrow in theories of elementary bosons, new phenomena must enter at an energy scale of m/e

 \rightarrow + positron, doubling of particles...

■ Rare Kaon decays: K_L→µ⁺µ⁻

Other open issues in particle physics

- Is the Higgs boson at 125 GeV the Higgs boson of the Standard Model? Are there other Higgs-like bosons?
- How did (does) the current matter–antimmater asymmetry in the universe arise?
- There is now experimental evidence (astrophysics!) that there is a mysterious type of matter: "Dark" matter. What is it? What does it interact with?
- Neutrinos (which are taken as massless) turned out to have masses. But tiny-tiny masses. Natural explanation of this smallness is New Physics

And while we're at it: gravity remains totally intractable (beyond astrophysics that is...)

The road to obtaining answers: precise measurements & direct searches...

- Physics of fundamental scalars and direct searches for New Physics
 - LHC, HL-LHC & future collider(s) (FCC-ee, FCC-hh, FCC-eh, CEPC, ILC, CLIC)
 - **u** Understand the strangest of all elements of the SM.
 - Search for new particles and physics phenomena.
- Dark Matter searches
 - Very large number of experiments aiming at detecting DM
 - Direct detection (lab), indirect detection (astrophy).
 - Matter-matter collisions.

Physics of Flavor:

- Quark sector: Kaon and B hadron decays (LHC, HL-LHC, Fixed-Target (CERN, JP), Belle II (JP)
 - Measure CP sources as precisely as possible. Probe sacred (but also accidental...) laws (e.g. lepton number conservation). Universality? Probe rarest decay modes.
- Neutrinos: Complementarity of beams [DUNE (US), HyperK (JP)], reactors (JUNO), atmospheric (ORCA)
 - Is there CP violation in the lepton sector? PMNS matrix (à la CKM)?
 - \square Mass hierarchy of three ν generations ("normal" or "inverted")? Dirac or Majorana?
- High-precision measurements; tests of Fundamental Symmetries

Future accelerators

Collider	Туре	\sqrt{s}	P [%]	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time	Refs.	Abbreviation
			$[e^{-}/e^{+}]$		$[10^{34}]$ cm ⁻² s ⁻¹	$[ab^{-1}]$	[years]		
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	HL-LHC
HE-LHC	pp	27 TeV	-	2	16	15.0	20	[10]	HE-LHC
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	
		$2M_W$	0/0	2	25	10	1-2		
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
		_					(+1)	(1y SD	before $2m_{top}$ run)
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC ₂₅₀
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC350
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC500
							(+1)	(1y SD	after 250 GeV run)
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀
							(+4)	(2y SDs between energy stages)	
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[9]	LHeC
HE-LHeC	ep	1.8 TeV	-	1	1.5	2.0	20	[1]	HE-LHeC
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

ILC, CLIC, FCC-ee/hh, CEPC

CEPC: multiple candidate sites in China

The challenges

Linear ee colliders:

- a Acceleration gradient
 - ILC: 30 MV/m; CLIC: 72 MV/m
- Luminosity (to be partially recovered by polarization)
 - □ + brem loss: e.g. at 3000 GeV, 1/3 at >0.99 \sqrt{s}
- Tiny beam spot:
 - v: 8 nm for ILC; 3 nm for CLIC3000.
- Power consumption
 - □ ILC: 130-300 MW
 - CLIC: 170-590 MW
- Circular ee colliders:
 - Power consumption: 260-350 MW
 - Luminosity drops with E

- hh collider:
 - Magnets!
 - Need 16 TeV (x2 LHC); they do not exist today
 - High stored beam energy (8-9 GJ)
 - Beam handling, beam dumping
 - Collimation
 - High synchrotron radiation inside magnets: several MW
 - Beam screen design and cryogenic efficiency;
 - Power consumption: 580 MW

Costs (GUnits): ILC: 5.0 (for 250 GeV); 7.8 (500 GeV) CLIC: 5.9 or 7.3 (for 380 GeV) + 5.1 (1500 GeV) + 7.1 (3000 GeV) (Tot: 19.5) FCC-ee: 11.6; but 7.1 is the tunnel FCC-hh: tunnel + 17 (Tot: 24)

FCC-ee and CEPC

Double-ring colliders with full-energy top-up booster ring

- □ CEPC started as 54 km, single-ring design; nowadays ~ FCC-ee 100 km, double-ring
- 2 IPs, 2 RF straights, tapering of arc magnet strengths to match local energy
- Common use of RF systems for both beams at highest energy working point
- Synchrotron radiation: 50 MW (30 MW) at FCC-ee (CEPC)
- □ Beam lifetime >12 min; top-up injection, e⁺ rate ~10¹¹/s.
- Asymmetric IRs: limit SR of incoming beams towards detectors
 - $\Box \rightarrow$ large crossing angle

FCC-hh and SppC

- □ Circumference ~100 km, high luminosity 3(1) × 10³⁵cm⁻²s⁻¹ (SppC)
 - Two IRs at high lumi potentially two more experiments (possibly combined with injection section, collimation insertions, extraction/dump insertion, RF insertion,

Grand summary

	Iranna 2 caanania				HL	-LHC+					l
	kappa-5 scenario	ILC ₂₅₀	ILC500	CLIC ₃₈₀	CLIC ₁₅₀₀	CLIC ₃₀₀₀	CEPC	FCC-ee ₂₄₀	FCC-ee ₃₆₅	FCC-ee/eh/hh	
•	κ_W (%)	1.1	0.29	0.75	0.4	0.38	0.95	0.95	0.41	0.2	ľ
	$\kappa_Z(\%)$	0.29	0.23	0.44	0.39	0.39	0.18	0.19	0.17	0.17	l
	$\kappa_g(\%)$	1.4	0.84	1.5	1.1	0.86	1.1	1.2	0.89	0.53	l
	κ_{γ} (%)	1.3	1.2	1.5*	1.3	1.1	1.2	1.3	1.2	0.36	l
	$\kappa_{Z\gamma}$ (%)	11.*	11.*	11.*	8.4	5.7	6.3	11.*	10.	0.7	
	κ_{c} (%)	2.	1.2	4.1	1.9	1.4	2.	1.6	1.3	0.97	
	κ_t (%)	2.7	2.4	2.7	1.9	1.9	2.6	2.6	2.6	0.95	l
	κ_b (%)	1.2	0.57	1.2	0.61	0.53	0.92	1.	0.64	0.48	
	κ_{μ} (%)	4.2	3.9	4.4*	4.1	3.5	3.9	4.	3.9	0.44	ſ
	κ_{τ} (%)	1.1	0.64	1.4	0.99	0.82	0.96	0.98	0.66	0.49	ſ
	BR _{inv} (<%, 95% CL)	0.26	0.22	0.63	0.62	0.61	0.27	0.22	0.19	0.024	
	BR _{unt} (<%, 95% CL)	1.8	1.4	2.7	2.4	2.4	1.1	1.2	1.	1.	l
											_

All ee colliders achieve major (and comparable) improvements in their first stage already in probing Higgs sector compared to HL-LHC: at least half of the couplings get improved by factor 5 or more W/Z effective couplings and BR(H \rightarrow invisible) probed to $\sim 3x10^{-3}$ Model-independent total cross section measurement \rightarrow access to width, untagged BR Clean environment to study H if/when anomalies are seen to understand underlying physics

Grand summary: Higgs couplings (κ framework) (Future Collider+HL-LHC)

Plus of κ framework: it is simple; Minus: underestimates effects of polarization Can show deviation from SM, but no real further information on nature of source of deviation; Untagged and invisible BRs constrained by measurements.

HLLHC 0

- 3

2

Higgs "factories"

Schemes for increasing luminosity:

- FCC-ee: consider more IRs/running longer
- ILC: more bunches per pulse, doubling repetition rate?
 - Each: x 2 in lumi; higher power consumption and somewhat higher cost
- CLIC: doubling repetition rate at 380 GeV?
 - Factor 2 in lumi; power increases from 170 MW to 220 MW (+slight cost increase)

Low energies: circular colliders superior performance Higher energies: CC lumi reduction due to synchrotron radiation; linear colliders better: luminosity per beam power roughly constant

Longit. polarisation: only at Linear Colliders e⁻: 80%; e⁺: 30% @ ILC; 0 @ CLIC (not needed) FCC-ee: transverse polarization for precise E_{beam}

New resonances/particles/forces?

Higgs Compositeness?

Using fits from EWK/Higgs group (arXiv:1905.03764)

Connection between notations:

• For mass/coupling ~2 TeV \rightarrow deviations ~1% in Higgs couplings

Long-term future: SUSY at >1TeV.... <10 TeV?

• The questions:

- If {SUSY} which masses (and mass differences) of strongly- or weakly-coupled superpartners can we reach?
- Is nature fundamentally fine-tuned? If the solution is SUSY, how well can we test this?
- Is dark matter a thermal SUSY WIMP?
- Strongly-interacting SUSY (gluinos and squarks): simply, the purview of hadron colliders
 All Colliders: Top squark projections

Long-term future: SUSY EWK sector

Scalar mediator: Higgs portal and BSM scalar

DarkSide-Argo (proj.)

Extended Scalar sectors: MSSM

Indirect info also probes additional h bosons (e.g. $\kappa_b \sim m_Z^2/m_A^2$)

EU Strategy: other essential scientific activities for particle physics

- A. The quest for dark matter and the exploration of flavour and fundamental symmetries are crucial components of the search for new physics.
 - This search can be done in many ways, for example through precision measurements of flavour physics and electric or magnetic dipole moments, and searches for axions, dark sector candidates and feebly interacting particles. There are many options to address such physics topics including energy-frontier colliders, accelerator and non-accelerator experiments. A diverse programme that is complementary to the energy frontier is an essential part of the European particle physics Strategy. Experiments in such diverse areas that offer potential high-impact particle physics programmes at laboratories in Europe should be supported, as well as participation in such experiments in other regions of the world.
- B. Theoretical physics is an essential driver of particle physics that opens new, daring lines of research, motivates experimental searches and provides the tools needed to fully exploit experimental results. It also plays an important role in capturing the imagination of the public and inspiring young researchers.
- C. The success of particle physics experiments relies on innovative instrumentation and state-of-the-art infrastructures. To prepare and realise future experimental research programmes, the community must maintain a strong focus on instrumentation.

Where we stand

- Most successful Theory ever: Standard Model of Particle Physics
 - Highest priority: extend understanding of SM and its newly discovered scalar sector.
- Evidence that SM is either incomplete or an Effective Theory of some Ultimate Theory (or another step in a series of Effective Theories...)
 - Experimental evidence
 - Dark Matter (DM): The "thing" we know the least about: Unknown nature, unknown number(s) of DM particles, unknown mass range(s) – 10⁸⁰.
 - Neutrino masses: SM gauge group allows for Majorana masses, "explaining" their tiny values; unknown (putative) Majorana scale.
 - Matter-antimatter asymmetry of the Universe: nowhere near what we measure in CP violation experiments. What about CP violation in the lepton sector?
 - Theory issues
 - Electroweak (EW) hierarchy problem. Why is the Higgs so light?
 - The flavour puzzle. Why three generations of quarks and leptons? With very different masses and mixings? Size of CP violation? (explain matter universe???)
 - And lots more... e.g. Strong CP problem. Another vacuum issue (this time QCD). Why is its θ parameter experimentally constrained to be extremely small? For a priori no good reason.... → Axions?

SM Outliers

Current issues to watch...

A very sensitive SM test: the m_w-m_t plane

HEP: current perspectives and future challenges
A very sensitive SM test: the m_w-m_t plane

~ 3σ higher than previous CDF result (1/4 of data, correlations taken into account)

Flavor physics: charged lepton sector & summary

Muon g–2

Flavor physics: quark sector (II)

Introduction k penguin (EWF) decays A. Greljo @ FAW21* **Class** I Scalar LQ nanging neutral currents (FCNC) decays are forbidden at tree level (in SM) Vector LQ $g_{\tau} \lesssim g_{\mu}$ Z' M_X [GeV] C are possible via quark loops: W^{-} 10³ 10^{5} b b 10^{-1} 10 10^{2} 10^{4} 10^{6} 107 SSScalar LQ Class II <110⁻⁶ Vector LQ W^{-1} $g_{\tau} \gg g_{\mu}$ M_X [GeV] 10^{-1} 10^{3} 105 10 10^{2} 10^{4} 10^{6} 10^{7} μ +semileptonic + ang. distrib. പ 10 K C+20-8 e loop suppressed \rightarrow rar B. Capdevila et al @ FAW21* 3 ions fr ACDMIN 1.35 1.35 oquark CEPPEN)382] an CEVES 2.5 HMMM 1.80 554 * 1.00 to the erved 0.75 0.75 LHCb lectroweak A 1.50 AN 0.50 Fit (1903.11517): 1-σ region 1.5 2-σ region 0.35 0.35 0.00 6.00 Projections: - CLIC₃₀₀₀ HL-LHC, pp → UU* -0.25 -0.25European Strate --- HL-LHC, pp $\rightarrow \tau^{+}\tau^{-}$ -0.50-0.50- HE-LHC, pp \rightarrow UU' -1.75 -1.50 -1.25 -1.00 -0.75 $C_0^{NP\mu}$ -8.50 -8.25 8.80 8.25 -1.35 -1.09 -0.75 -0.50 -0.25 0.00 0.25 $C_{0}^{NP\mu}$ 0.50 0.5 1.5 2 2.5 3 3.5 4.5 5 5.5 M_u [TeV] global fit fit to LFU observables + $B_2 \rightarrow \mu\mu$ *Unpaid ad for FAW21: Flavour Anomaly Workshop 2021

HEP: current perspectives and future challenges

Flavor physics: quark sector (III)

Physics of flavor: Lepton & Quark sectors

- Neutrinos:
 - **The very nature of them: Majorana or Dirac?**
 - Oscillations, (additional) mass generation (beyond EWSB?)
 - Richness of the lepton sector (PMNS, CP violation)
- Quark sector:
 - **CP violation, CKM triangle**
 - Rare decays of K and B mesons; SM elements: motivated (universality) and accidental (lepton number conservation)
 - □ Forbidden (?) decays (e.g. $\mu \rightarrow e\gamma$)

DM: summary

- Strengths in WIMP searches both in future lepton and hadron options:
 - Combined FCC program shows best sensitivity to benchmarks
 - □ Still, needs complementary experiments: DM ≠ WIMP (only)
- We can probe the thermal WIMP parameter region
- Large (& yet unknown) parts of phase space can be probed by precision environment/lower bkg in ee

Light DM, m_χ=1GeV

Significant model dependence. UV models may have comparable quark and lepton couplings. If both present, can also use dilepton resonances.

SUSY: any "holes"?

Indeed, after LHC, there will be holes [in low mass regions]; closing or looking at how to close them at HL-LHC; for EWKinos, some regions will remain difficult @ pp.

DM indirect searches: AMS update

Neutrinos

Extras

nass measurement

Mass limits (measurements...)

Today (BAO +struct. form): $\Sigma m_v < 0.12$ (95% CL) Ultimate (DESI+BAO): $\Sigma m_v < 0.02$

Direct m_v measurement(s) KATRIN: $m_\beta < 1.1 \text{ eV} (90\% \text{ CL})$ Asymptotic: $m_\beta < 0.2 \text{ eV}$ Ultimate (Project-8): 40 meV

HEP: current perspectives and future challenges

Neutrinos: Mass & nature (Majorana/Dirac – $0\nu\beta\beta$)

HEP: current perspectives and future challenges