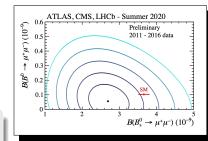


Measurements of rare B meson decays properties with CMS $$\operatorname{Run2}$$ data

<u>Todor Ivanov¹</u> On behalf of The CMS Collaboration

¹Sofia University, Bulgaria.

Aug 29, 2022


Introduction

Reporting results for $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ BF and lifetime measurements with CMS Run2 data.

- $\bullet~{\sf Rare}~b\to s\ell^+\ell^-$ flavor changing neutral current decays
- Sensitive to BSM
- Theory clean and experimentally accessible.
- Non perturbative hadronic corrections through B_(s)
- Both Helicity suppressed by a factor $m_{\mu}^2/m_{\rm B}^2$
- $B^0 \rightarrow \mu^+\mu^-$ CKM suppressed
- Deviations in Recent combined data analysis

Current Standard Model prediction:

$$\begin{split} \mathcal{B}(\mathsf{B}^0_{\mathsf{s}} \to \mu^+ \mu^-) &= (3.66 \pm 0.14) \times 10^{-9}, \\ \mathcal{B}(\mathsf{B}^0 \to \mu^+ \mu^-) &= (1.03 \pm 0.05) \times 10^{-10}. \end{split}$$

Introduction

Data analysis overview Event reconstruction and selection Multivariate analysis Systematic uncertainties Results

Introduction

Importance of BF measurement:

- Proceed through penguin and box diagrams
- $\bullet ~ b \to s \ell^+ \ell^-$ decays dominated by semileptonic operators:
 - $O_9 = (\overline{s}_L \gamma_\mu b_L)(\overline{\ell} \gamma^\mu \ell)$
 - $O_{10} = (\overline{\mathbf{s}}_L \gamma_\mu \mathbf{b}_L) (\bar{\ell} \gamma^\mu \gamma_5 \ell)$
- Fully leptonic final state depending mostly on O_{10}
- **BSM** physics as deviations from Wilson Coefficients $(C_9 \text{ and } C_{10})$

Importance of lifetime measurement

- \bullet Two mass eigenstates heavy $(B^0_{s,H})$ and light $(B^0_{s,L})$
- Mass eigenstates are also CP eigenstates
- Only $B^0_{s,H}$ decays to $\mu^+\mu^-$ final state (CP odd)
- BSM physics in deviation from SM estimated value for $\tau({\rm B_{S}^{0}}\to\mu^{+}\mu^{-})$

 $B^0_* \rightarrow \mu^+ \mu^-$

 W^+

 W^{-}

 μ

ЦĽ

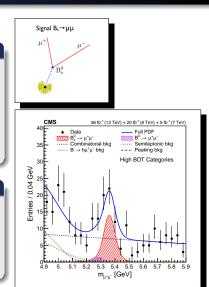
Currently established lifetime value:

 $au_{H} = 1.620 \pm 0.007$ ps

 B^0_{\circ}

 B^0_e

Data analysis overview


Strategy

- Based on improved analysis technique with more data
- \bullet Searching for tow oppositely charged muons $\mu^+\mu^-$ and applying vertex fit
- Results extracted with Unbinned Maximum Likelihood fits **UML**
 - **BF:** 2D fit ($\mu\mu$ mas + mas uncertainty)
 - Lifetime: 3D fit ($\mu\mu$ mas + τ + τ uncertainty)

Data structure

16 categories:

- 4 data-taking periods: 2016a, 2016b, 2017, 2018
- 2 $\eta_{\sf F}$ regions: $0 < |\eta_{\sf F}| < 0.7$ and $0.7 < |\eta_{\sf F}| < 1.4$
- 2 signal purity regions: from MVAB discriminator
- Integrated lumi: 140 fb-1

3-body and partial decays B^+ Combinatorial Background B- $\bar{\nu_{\mu}}$ π^{-} B^0 K^+

Background

- Partial: from partially reconstructed 3 body decays.
- Combinatorial: $\mu\mu$ from different B mesons
- \bullet $\mbox{Peaking:}$ charmless two-body decays leading to $\mu\mu$ misidentification
 - $B^0 \rightarrow K^+ \pi^-$
 - $\bullet ~B^0_s \to K^+K^-$
- MVA_B- combining multiple discriminating observables in a single powerful discriminator (reducing Partial and Combinatorial)
- MVA_µ- Tight muon identification (reducing Peaking)

Data analysis overview

Normalization channel

$$\mathcal{B}(\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}) \frac{\mathsf{N}_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}}{\mathsf{N}_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}} \frac{\varepsilon_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}}{\varepsilon_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}} \frac{f_{\mathsf{u}}}{f_{\mathsf{s}}},$$

$$\mathcal{B}(\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mathsf{J}/\psi\phi) \frac{N_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}}{N_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mathsf{J}/\psi\phi}} \frac{\varepsilon_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mathsf{J}/\psi\phi}}{\varepsilon_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}}$$

$$\mathcal{B}(\mathsf{B}^{0} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}) \frac{\mathsf{N}_{\mathsf{B}^{0} \to \mu^{+}\mu^{-}}}{\mathsf{N}_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}} \frac{\varepsilon_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}}{\varepsilon_{\mathsf{B}^{0} \to \mu^{+}\mu^{-}}} \frac{f_{\mathrm{u}}}{f_{\mathrm{d}}},$$

For Branching Fraction measurement we us other 2 B decay channels:

- ${\sf B}^+
 ightarrow {\sf J}/\psi {\sf K}^+$ decay with ${\sf J}/\psi
 ightarrow \mu^+\mu^-$ is the preferred choice
- $\bullet~\mathsf{B}^0_{\mathsf{s}}\to\mathsf{J}/\psi\phi$ decays with $\phi\to\mathsf{K}^+\mathsf{K}^-$ as an alternative
- * ($f_s / f_u \ \mathcal{B}(B^+ \to J/\psi K^+)$ and $\mathcal{B}(B^0_s \to J/\psi \phi)$ are external parameters to the analysis)

Event reconstruction and selection

Event preselection

Selection	$B \rightarrow \mu^+ \mu^-$	${\sf B}^+ o {\sf J}/\psi{\sf K}^+$	$B_s^0 \rightarrow J/\psi\phi$
B candidate mass [GeV]	[4.90, 5.90]	[4.90, 5.90]	[4.90, 5.90]
Blinding window [GeV]	[5.15, 5.50]		
$p_{\mathrm{T}\mu}$ [GeV]	> 4	> 4	> 4
$ \eta_{\mu} $	< 1.4	< 1.4	< 1.4
3D SV displacement significance	> 6	> 4	> 4
$p_{\mathrm{T}\mu^+\mu^-}$ [GeV]	> 5	> 7	> 7
$\mu^+\mu^-$ SV probability	> 0.025	> 0.1	> 0.1
$\mu^+\mu^-$ invariant mass [GeV]		[2.9, 3.3]	[2.9, 3.3]
Kaon $p_{\rm T}$ [GeV]		> 1	> 1
Mass-constrained fit probability		> 0.025	> 0.025
2D $\mu^+\mu^-$ pointing angle [rad]		< 0.4	< 0.4
ϕ candidate mass [GeV]			[1.01, 1.03]

• Selection requirements are as loose as possible

- Provide more data to MultiVariate Analysis (MVA)
- Limited by trigger requirements
 - L1: required two high-quality oppositely charged muons with $\eta <$ 1.5
 - **HLT**: high-quality secondary dimuon vertex was required and narrow mass windows around the B meson and J/ masses.
- Normalization channel selection is optimized to match kinematics of signal

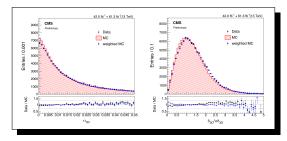
Multivariate analysis Systematic uncertainties Results



 \bullet New multivariate analysis (MVA $_{\rm B})$ used to suppress the dominant backgrounds

Trained with signal MC and mass sideband data with the XGBoost package (advanced gradientboosting algorithm)

- Most discriminating variables
 - Pointing angles: α_{2D}, α_{3D}
 - Impact parameter and its significance: δ_{3D} , $\delta_{3D}/\sigma(\delta_{3D})$
 - Flight length and its significance: $I_{3D}/\sigma(I_{3D})$
 - Isolation for B candidate and muons
 - Dimuon vertex quality
- MVA mismodeling can be a major source of systematics Control sample from $B^+ \rightarrow J/\psi K^+$
- MVA is trained to rejected $\mu\mu K$ events
 - Need to match $B^+ \rightarrow J\psi K^+$ phase space to $B \rightarrow \mu^+ \mu^-$
 - $\mu\mu K$: pointing angle, impact parameter (soft kaon)
 - *µµ*: vertex probability, displacement, isolation (ignore kaon)
 - Scaling flight length significance by 1.6



Multivariate analysis - XGBoost Reweighting

- Trained XGBoost classifier on MC vs Data with sWeights
- Capture the difference between MC and Data
- Use $w = (Prob_{Data})/(Prob_M C)$ as a weight to reweight $B \rightarrow \mu^+\mu^-$ MC samples

Method	Loose MVA _B selection		Tight MVA _B selection			
include	2016	2017	2018	2016	2017	2018
Ratio	1.011 ± 0.013	0.939 ± 0.007	0.903 ± 0.008	1.058 ± 0.019	0.891 ± 0.008	0.885 ± 0.010
XGBoost	0.991 ± 0.008	0.949 ± 0.003	0.917 ± 0.002	1.008 ± 0.011	0.905 ± 0.004	0.908 ± 0.002

Todor Ivanov¹ On behalf of The CMS Collaboration

Measurements of rare B meson decays properties with CMS Run2 data

9/16

Branching fraction measurement Systematic uncertainty

Effect	${\sf B}^0_{s} ightarrow \mu^+\mu^- {\sf B}^0 ightarrow \mu^+\mu^-$	
Trigger efficiency	2-4%	
Pileup	1%	
Vertex quality requirement	1%	
MVA _B correction	2–3%	
Tracking efficiency (per kaon)	2.3%	
$B^+ ightarrow J/\psiK^+$ shape uncertainty	1%	
Fit bias	2.2% 4.5%	
$f_{\rm S}/f_{\rm U}$ ratio of the B meson production fractions	3.5% -	

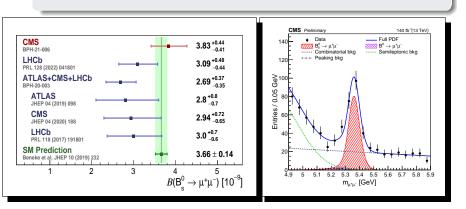
- Signal efficiency is correlated with the B s lifetime
- $\bullet~{\rm B} \rightarrow \mu^+\mu^-$ branching fractions are measured assuming the SM lifetime value
- Significant source of uncertainty is $f_{
 m s}/f_{
 m u}$

$$\mathcal{B}(\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}) = \mathcal{B}(\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}) \frac{\mathsf{N}_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}}{\mathsf{N}_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}} \frac{\varepsilon_{\mathsf{B}^{+} \to \mathsf{J}/\psi\mathsf{K}^{+}}}{\varepsilon_{\mathsf{B}^{\mathsf{0}}_{\mathsf{s}} \to \mu^{+}\mu^{-}}} \frac{f_{\mathsf{u}}}{f_{\mathsf{s}}},$$

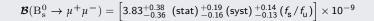
- Value used in this analysis $f_{\rm s}/f_{\rm u}$ = 0.23+/-0.008
 - ${\scriptstyle \bullet}$ Based on P_t dependent results from LHCb PRD 104 (2021) 032005

Lifetime measurement Systematic uncertainty

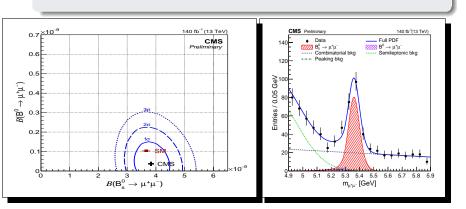
Effect	2016a	2016b	2017	2018	
Efficiency modeling		0.01			
Lifetime dependence		0.01			
Decay time distribution mismodeling	0.10	0.06	0.02	0.02	
Lifetime fit bias	0.04	0.04	0.05	0.04	
Total	0.11	0.07	0.05	0.04	


- \bullet Dominant systematics comes from a strong correlation between $\text{MVA}_{\rm B}$ and decay time, which are hard to model well
- Corrections can be derived in data and uncertainty is mostly limited by the size of the control sample

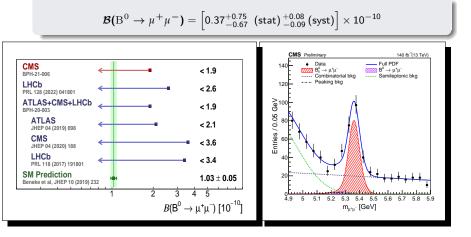
Results Branching Fraction measurement

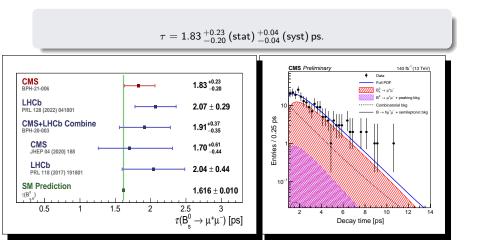

Todor Ivanov¹ On behalf of The CMS Collaboration

Measurements of rare B meson decays properties with CMS Run2 data


Da Event reconstri N Syste

Results Branching Fraction measurement


Results


Results Branching Fraction measurement

Results Lifetime measurement

Summary

- Measuring B meson decays properties gives unique chance for studies of new physics at the energy scales reachable to date.
- \bullet A measurement of B $\to \mu^+\mu^-$ Branching Fraction and searches for B^0 $\to \mu^+\mu^-$ have been performed
- \circ Statistical uncertainty has been reduced to 11~%
- Most precise measurement to date
- No evidence for ${\sf B}^0 o \mu^+\mu^-$ has been found