

VERIFICATION OF QUANTUM TECHNOLOGIES

BORIVOJE DAKIĆ

UNIVERSITY OF VIENNA

QUANTUM TECHNOLOGY

QUANTUM INFORMATION PROCESSING

APPLICATIONS

Q QUANTUM COMMUNICATION
Q QUANTUM COMPUTING
QUANTUM SENSING \& METROLOGY
\square QUANTUM SIMULATIONS

Coherent (quantum) processing

$$
\begin{aligned}
& \text { Example of an exponential speed-up: } \\
& \qquad 2^{59} s \text { (Age of Universe) } \rightarrow 59 s
\end{aligned}
$$

QUANTUM INFORMATION PROCESSING

- Quantum circuit

Classical processing in space of exp. dimension:

$$
|\psi\rangle_{\text {out }}=U|1011 \ldots\rangle=\sum_{i_{1} i_{2} \ldots} c_{i_{1} i_{2} \ldots}\left|i_{1} i_{2} \ldots\right\rangle
$$

$$
c_{i_{1} i_{2} \ldots}^{\prime}=U_{i_{1} i_{2} \ldots}^{j_{1} j_{2} \ldots} c_{j_{1} j_{2} \ldots}
$$

$$
p_{i_{1} i_{2} \ldots}^{\prime}=S_{i_{1} i_{2} \ldots}^{j_{1} j_{2} \ldots} p_{j_{1} j_{2} \ldots}
$$

coherent processing in complex vector space of exp. dimension 2^{n}

QUANTUM MAGIC

- HISTORICAL NOTE:
- „OLD" QUANTUM THEORY \rightarrow ENSEMBLE OF SYSTEM (MEAN VALUES, COLLECTIVE OBSERVABLES)
[„NEW" QUANTUM THEORY \rightarrow SINGLE SYSTEM (TRUE RANDOM INDIVIDUAL CLICKS)
- QI HAS DEEP ROOTS IN FOUNDATIONAL THINKING

A) Quantum superpositions

 Qubit: $\alpha|0\rangle+\beta|1\rangle$Physical implementation:

$$
\cos \left(\varphi_{1}-\varphi_{2}\right)|0\rangle+\sin \left(\varphi_{1}-\varphi_{2}\right)|1\rangle
$$

$$
x_{1}, x_{2}=0,1
$$

Many-worlds interpretation:
There are 2 worlds needed in order perform this "non-local" computation
D. Deutsch, 1980s

QUANTUM MAGIC

B) QUANTUM ENTANGLEMENT (CORRELATIONS)

Alice

J. Bell, 1960s

Quantum nonlocality:
$a \oplus b=x y$
Classical: $P_{\text {win }}=75 \%$
Quantum: $P_{\text {win }} \approx 85 \%$
IFF entanglement is present
$|\psi\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$

Combination of
A) Quantum superpositions B) Quantum entanglement

Exponential speed-ups!

QUANTUM ROADMAP

...	1980	1990	2000	2010	2020 ? ...
Quantum Foundations	First theoretical concepts/control of ind. systems	Complete theory	Proof-of-concept demonstrtions	Serious investments (Google, IBM, National flagships)	Quantum computational supremacy	Fully fledged quantum computer
Google AI			China NL		Most important milestone!	

54 qubits, the Sycamore processor, Nature 2019.

100+ photons, Science 2020, arXiv:2106.15534, July-2021.

NEAR-TERM QUANTUM DEVICES \& VERIFICATION PROBLEM

54 qubits, the Sycamore processor, Nature 2019.

100+ photons, Science 2020, arXiv:2106.15534, July 2021.

Era of the noisy intermediate-scale quantum devices (NISQD, Preskill 18), 50+ qubits,
NISQD are not universal, not-protected by error-correction, etc.
\square Verification \& benchmarking is of the central importance.

Is the device functioning in the anticipated fashion?

VERIFICATION PROBLEMS

Eisert et al, Nature Reviews Physics 2, 382-390 (2020).

Verification (certification/characterization) tasks:

Entanglement, non-locality, fidelity estimation, state/process tomography, computing, simulations, property testing, etc.

Complexity (effort) of the problem:

\square Sample complexity (\# of exp. repetitions/copies)
\square Quantum computational complexity (\# of quantum gates)
Post-processing complexity (classical memory \& computational cost)

Scale in general unfavourably with the system size (exp. growth)

Goal: Find tractable examples

Exp. in size!
Golden standard
Quantum state tomography

exp. complexity

VERIFICATION PROGRAM

Any property A
direct inference!
Central question: Given a limited number of interactions with a large system, how much classical information can we learn with a high degree of certainty?

QI Perspective: Quering the system with certain questions $Q_{1}, Q_{2}, \ldots, Q_{K}$ to verify some property A

$$
\operatorname{Pr}[p a s s \text { all } \mid \rho \in \bar{A}]=\exp [-\alpha N r(d)]
$$

N is number of repetitions
$d=2^{n}$ is dimension of system

- J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article.

VERIFICATION PROGRAM

$$
\begin{aligned}
& \operatorname{Pr}[\text { pass all } \mid \rho \in \bar{A}]=\exp [-\alpha N r(d)] \\
& d=2^{n}
\end{aligned}
$$

- WHAT DO WE WANT:

a) Dimension demarcation ($r(d)$ is typically constant in d),
b) Fast convergence in the number of queries N,
c) Low computational complexity (e.g. Qs are implemented locally or low depth circuits),
d) Simple post-processing, e.g. simple evaluation of the decision function.

Review in this talk: Single- and few- copy entaglement detection, application to quantum state verification \& certification, and quantum state tomography (selective tomography and classical shadows)

- J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article.

FEW-COPY ENTANGLEMENT DETECTION

Standardly: witness method (Gühne09): STATE IS ENTANGLED IF $\langle W\rangle<0$
In practice: $W=\sum_{s} w_{S} P_{l c c a l}^{(s)} \square$ measure local components to get $\langle W\rangle$ to accuracy ϵ
Re-formulation into q series: 1. $\langle W\rangle<0$ true? (i.e. state is entangled or not?)

Sampling weights
Queries (sample randomly)
Exp. fast convergence!
Results: $N \sim \log \delta^{-1}$ (removes ϵ-dependence from $N \sim \frac{\log \delta^{-1}}{\epsilon^{2}}$)

- Verification as a decision procedure (YES/NO),
- Translation works for a generic witness,
- No size dependence, e.g. verifies entaglement in graphs states wit 99\% with 16 copies only (regardless of the size),
- Efficient for a large class of quantum states (e.g. many-body ground states).
- V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature Physics 15, 935, 2019.

EXPERIMENT

Experimental 6-qubit photonic graph state (Saggio et al, Nature Physics, 2019):

SOME ENTAGLEMENT	GENUINE 6-QUBIT ENTANGLEMENT
≈ 20 copies	≈ 100 copies

- V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature Physics 15, 935, 2019.

SINGLE-COPY ENTANGLEMENT DETECTION

\square Furher reduction to the logical limit (one click)
\square Robust states (e.g. cluster states or GS of local Hamiltonians)

For sufficiently large N , almost certain entaglement verification from ONE COPY
Example: One copy of 24 -qubit LCS suffcies to verify entanglement with $>95 \%$!
Summary: Single-shot entanglement verification for a large class of states (cluster states, TNS states, GS of local Hamiltoninans).

- A. Dimić and B. Dakić, npi Quantum Information 4, 11, 2018.

DEVICE-INDEPENDENT QUANTUM STATE VERIFICATION\&CERITIFICATION (QSV\&C)

- QSV TASK (Palister18): Are $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{N}$ produced by an unknown source ϵ-close to the target state? $\square N=O\left(\epsilon^{-1}\right) ~ \longrightarrow$ Optimal scaling (very cheap)
- PROBLEMS: Artificial constrants (e.g. all σ s are ϵ-close to the target or not), trusted devices, certification problem.

Self-testing methods + our methods:

- Device-indpendent setting,
- Non-adversarial scenario (non IID),
- Certification is resolved.

$$
N=O\left(\epsilon^{-1}\right) \longmapsto \text { Optimal scaling }
$$

- A. Dimić, I. Šupić and B. Dakić, Phys. Rev. X Quantum 3, 010317 (2022).

QUANTUM STATE TOMOGRAPHY

Task: Determine unknown quantum state of a d-dim. quantum system
\square Figure of merit: $\left\|\rho^{e x p}-\rho^{t h}\right\|_{1} \leq \varepsilon$ (trace-distance norm)
\square Resources (\# of required copies N for a fixed error ε):

Best strategy*	N
Independent strategy**	$O\left(d^{2} / \varepsilon^{2}\right)$
Low rank (r) matrix $^{* * *}$	$O\left(d^{3} / \varepsilon^{2}\right)$
	$\Omega\left(\frac{r d}{\varepsilon^{2}}\right) / \ln (d r / \varepsilon)$

* Harrow 17, O’Donnell15; ** Kueng 14; *** Flammial 1, Harrow 17

Sampling complexity: For composite systems, e.g. qubits ($d=2^{n}$), explicit dim. dependence makes the task completely intractable: $N \sim \exp (n)$!
\square Post-processing: Memory \& computational cost is huge for storing and manipulating exp. large matrices!

AN ALTERNATIVE: SHADOW TOMOGRAPHY

\square Full tomo: $\left\|\rho^{e x p}-\rho^{t h}\right\|_{1} \leq \varepsilon$ (trace-distance norm)
\square Estimated density matrix allows for the prediction of any measurement to accuracy ε
DMost of this information is irellevant/not of practical use
Different task: Shadow tomogrpahy, i.e. tomography for all practical purposes.
\square Given a set of observables $E_{1}, E_{2}, \ldots, E_{M}$ the set of mean values $\left\langle E_{1}\right\rangle,\left\langle E_{2}\right\rangle, \ldots,\left\langle E_{M}\right\rangle$ to be estimated by using a moderate number of resources (copies)?
$N=\tilde{O}\left(\log \delta^{-1} \log d \log ^{4} M / \varepsilon^{4}\right) \quad \square$ Requires universal quantum computer

DOUR GOAL: Put constraints on desired observables $E_{1}, E_{2}, \ldots, E_{M}$ to reduce (quantum) computational effort while still maintaining extraction of the \exp. \# of $E_{k} \mathrm{~s}$, e.g. $M \sim \exp (\alpha n)$

- S. Aaronson, SIAM Journal on Computing 2019, 49, 5 STOC18

SELECTIVE QUANTUM STATE TOMOGRAPHY (SQST)

Allows for multiple estimations (of various $A_{i} \mathrm{~s}$) from the same data

Universal data samples

Complete for selective (partial) tomography!

Benefits:

- Data samples of constant size (no dimension scaling),
- Can be repeated M times at a very low cost, i.e. $N \sim \log M$
- Measurements are computationaly cheap, e.g. linear depth $\sim n$
- Post-processing is very simple, no need to store and manipulate exp. large matrices
J. Morris and B. Dakić, arXiv: 1909.05880 (2019), H. Huang and R. Kueng, arXiv: 1908.08909 (2019).

MEASURING OFF-DIAGONAL ELEMENTS

Classical task: Given unkown distribution $\left(p_{1}, \ldots, p_{d}\right)$ what is the minimal number of runs nedeed to estimate all p_{k} 's to a given accuracy ϵ ?

$$
\begin{aligned}
& \max _{k}\left|p_{k}-p_{k}^{e s t}\right|<\epsilon \quad \square \text { Tomography in MAX norm } \\
& N=O\left(\log \frac{d}{\delta} / \varepsilon^{2}\right) \quad(\text { Kamath 15, Aaronson 1 8) }
\end{aligned}
$$

Quantum task (Selective Quantum State Tomography): Given unkown state ρ what is the min number of runs nedeed to estimate all $\rho_{i j}$'s to a given accuracy ϵ ?

$$
\max _{i j}\left|\rho_{i j}-\rho_{i j}^{e s t}\right|<\epsilon \quad \square \text { Tomography in MAX norm }
$$

Our result:

- Random sampling from mutually unbiases bases (MUBs via linear depth $\sim n$ circuits)
- To extract M elements to accuracy ϵ

$$
N=O\left(\log M / \varepsilon^{2}\right)
$$

- Full tomo in MAX norm (i.e. all elements) reuqires $O\left(\log d / \varepsilon^{2}\right)$ copies,
- Applied to to the full (trace-norm) tomo results in $\tilde{O}\left(d^{3} / \varepsilon^{2}\right)$ copies, which is optimal scaling.
J. Morris and B. Dakić, arXiv:1909.05880 (2019).

CLASSICAL SHADOWS

- SQST: POVM elements are MUBs known as quantum 2-designs (Morris\&Dakić, arXiv:1909.05880, 2019).
- Efficient estimation in 1 -norm: $\|A\|_{1}=\sum_{i j}\left|a_{i j}\right| \leq K ~ \square N=O\left(K^{2} \epsilon^{-2} \log M\right)$
- CLASSICAL SHADOWS: POVM elements are random Clifford circuits, i.e. 3-designs (Huang\&Kueng, arxiv:1908.08909, 2019).
- Efficient estimation in Frobenius norm: $\|A\|_{2}=\sum_{i j}\left|a_{i j}\right|^{2} \leq K \quad \square N=O\left(K^{2} \epsilon^{-2} \log M\right)$

APPLICATIONS: fidelity estimation, off-diagonal elements (coherence), short-range observables (Hamiltonian, energy), entaglement detection, state verification etc.

- H. Huang and R. Kueng, arXiv: 1908.08909 (2019), H. Huang, R. Kueng and J. Preskill, Nature Physics 16, 10502020.

SUMMARY

- Partial tomography: Avoid full tomography and directly extract/verify desired quantites
- Very powerful for large-scale systems:
a) Dimension demarcation
b) Fast convergence
c) Low computational complexity
d) Simple post-processing

References:

1. S. Aaronson, SIAM Journal on Computing 2019, 49, 5 STOC18,
2. J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article,
3. A. Dimić and B. Dakić, npi Quantum Information 4, 11, 2018,
4. V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature physics 15, 935, 2019,

P. Walther
5. A. Dimić, I. Šupić and B. Dakić, Phys. Rev. X Quantum 3, 010317 (2022),
6. H. Huang and R. Kueng, arXiv: 1908.08909 (2019),
7. H. Huang, R. Kueng and J. Preskill, Nature Physics 16, 1050, 2020.

THANK YOU!

