

VERIFICATION OF QUANTUM TECHNOLOGIES

BORIVOJE DAKIĆ

UNIVERSITY OF VIENNA

BPU11 Congress, Belgrade, 28 August - 1 September, 2022, Serbia

QUANTUM INFORMATION PROCESSING

Maths

space of exp. dimension 2^n

Appear

.... >

Quantum circuit

Where does the speed-up come from?

Standard narrative:

$$|\psi\rangle_{out} = U |1011...\rangle = \sum_{i_1 i_2 ...} c_{i_1 i_2 ...} |i_1 i_2|$$

$$c'_{i_{1}i_{2}...} = U_{i_{1}i_{2}...}^{j_{1}j_{2}...}c_{j_{1}j_{2}...}$$

$$2^{n} \times 2^{n}$$
unitary matrix
coherent processing in
complex vector

 $P_{0010...} = |\langle 0010 ... | U | 1011 ... \rangle|^2$ (potential) $2^n \times 2^n$ Randomly output unitary matrix (Born rule)

> **Classical processing in** space of exp. dimension:

$$p'_{i_1i_2\dots} = S^{j_1j_2\dots}_{i_1i_2\dots}p_{j_1j_2\dots}$$

QUANTUM MAGIC

HISTORICAL NOTE:

- □ "OLD" QUANTUM THEORY → ENSEMBLE OF SYSTEM (<u>MEAN VALUES</u>, COLLECTIVE OBSERVABLES)
- □ "NEW" QUANTUM THEORY → SINGLE SYSTEM (TRUE RANDOM INDIVIDUAL CLICKS)

QI HAS DEEP ROOTS IN FOUNDATIONAL THINKING

A) <u>Quantum superpositions</u> Qubit: $\alpha |0\rangle + \beta |1\rangle$

Physical implementation:

$$\xrightarrow{B} \qquad \pi x_1 \xrightarrow{B} \qquad \longrightarrow \text{IFF } x_1 \oplus x_2 = 0$$

 $x_1, x_2 = 0, 1$

<u>Many-worlds interpretation</u>: There are 2 worlds needed in order perform this "non-local" computation

D. Deutsch, 1980s

QUANTUM MAGIC

superposition

QUANTUM ROADMAP

NEAR-TERM QUANTUM DEVICES & VERIFICATION PROBLEM

54 qubits, the Sycamore processor, Nature 2019.

100+ photons, Science 2020, arXiv:2106.15534, July 2021.

Era of the noisy intermediate-scale quantum devices (NISQD, Preskill18), 50+ qubits,
 NISQD are not universal, not-protected by error-correction, etc.
 Verification & benchmarking is of the central importance.

Is the device functioning in the anticipated fashion?

VERIFICATION PROBLEMS

Eisert et al, Nature Reviews Physics 2, 382-390 (2020).

Verification (certification/characterization) tasks:

Entanglement, non-locality, fidelity estimation, state/process tomography, computing, simulations, property testing, etc.

Complexity (effort) of the problem:

Sample complexity (# of exp. repetitions/copies)
 Quantum computational complexity (# of quantum gates)

Post-processing complexity (classical memory & computational cost)

Scale in general unfavourably with the system size (exp. growth)

God

<u>**Goal</u>**: Find tractable examples</u>

<u>Central question</u>: Given a limited number of interactions with a large system, how much classical information can we learn with a high degree of certainty?

• J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article.

VERIFICATION PROGRAM

 $\Pr[pass \ all | \rho \in \overline{A}] = \exp[-\alpha \ N \ r(d)]$ $d = 2^{n}$

• WHAT DO WE WANT:

- a) Dimension demarcation (r(d)) is typically constant in d),
- b) Fast convergence in the number of queries N,
- c) Low computational complexity (e.g. Qs are implemented locally or low depth circuits),
- d) <u>Simple post-processing</u>, e.g. simple evaluation of the decision function.

<u>Review in this talk</u>: Single- and few- copy <u>entaglement detection</u>, application to quantum <u>state verification & certification</u>, and quantum state <u>tomography</u> (selective tomography and classical shadows)

• J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article.

FEW-COPY ENTANGLEMENT DETECTION

- Efficient for a large class of quantum states (e.g. many-body ground states).
- V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature Physics 15, 935, 2019.

EXPERIMENT

Experimental 6-qubit photonic graph state (Saggio et al, Nature Physics, 2019):

• V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature Physics 15, 935, 2019.

SINGLE-COPY ENTANGLEMENT DETECTION

Furher reduction to the logical limit (one click)
 Robust states (e.g. cluster states or GS of local Hamiltonians)
 X
 Random sampling of: X Z X

For sufficiently large N, almost certain entaglement verification from <u>ONE COPY</u>

Example: One copy of 24-qubit LCS suffcies to verify entanglement with >95%!

<u>Summary</u>: Single-shot entanglement verification for a large class of states (cluster states, TNS states, GS of local Hamiltoninans).

A. Dimić and B. Dakić, npj Quantum Information 4, 11, 2018.

DEVICE-INDEPENDENT QUANTUM STATE VERIFICATION&CERITIFICATION (QSV&C)

- <u>QSV TASK (Palister18)</u>: Are $\sigma_1, \sigma_2, ..., \sigma_N$ produced by an unknown source ϵ -close to the target state? $\longrightarrow N = O(\epsilon^{-1})$ \longrightarrow Optimal scaling (very cheap)
- **<u>PROBLEMS</u>**: Artificial constrants (e.g. all σ s are ϵ -close to the target or not), trusted devices, certification problem.

<u>Self-testing methods + our methods:</u>

- Device-indpendent setting,
- Non-adversarial scenario (non IID),
- Certification is resolved.

$$N = O(\epsilon^{-1})$$
 \implies Optimal scaling

• A. Dimić, I. Šupić and B. Dakić, Phys. Rev. X Quantum 3, 010317 (2022).

QUANTUM STATE TOMOGRAPHY

<u>Task</u>: Determine unknown quantum state of a d-dim. quantum system **<u>Figure of merit</u>**: $\|\rho^{exp} - \rho^{th}\|_1 \le \varepsilon$ (trace-distance norm)

 \Box <u>**Resources**</u> (# of required copies N for a fixed error ε):

	Ν
Best strategy*	$O(d^2/\varepsilon^2)$
Independent strategy**	$O(d^3/\varepsilon^2)$
Low rank (<i>r</i>) matrix***	$\Omega\left(\frac{rd}{\varepsilon^2}\right)/\ln(dr/\varepsilon)$

* Harrow17, O'Donnell15; ** Kueng14; *** Flammia11, Harrow17

Sampling complexity: For composite systems, e.g. qubits $(d = 2^n)$, explicit dim. dependence makes the task completely intractable: $N \sim \exp(n)!$

Post-processing: Memory & computational cost is huge for storing and manipulating exp. large matrices!

Full tomography is intractable

AN ALTERNATIVE: SHADOW TOMOGRAPHY

<u>Full tomo</u>: $\|\rho^{exp} - \rho^{th}\|_{1} \leq \varepsilon$ (trace-distance norm)

Estimated density matrix allows for the prediction of any measurement to accuracy \mathcal{E} Most of this information is irellevant/not of practical use

Different task: Shadow tomogrpahy, i.e. tomography for all practical purposes.

Given a set of observables E_1, E_2, \dots, E_M the set of mean values $\langle E_1 \rangle, \langle E_2 \rangle, \dots, \langle E_M \rangle$ to be estimated by using a moderate number of resources (copies)?

 $N = \tilde{O}(\log \delta^{-1} \log d \log^4 M / \varepsilon^4)$

Requires universal quantum computer

OUR GOAL: Put constraints on desired observables $E_1, E_2, ..., E_M$ to reduce (quantum) computational effort while still maintaining extraction of the exp. # of E_k s, e.g. $M \sim \exp(\alpha n)$

• S. Aaronson, SIAM Journal on Computing 2019, 49, 5 STOC18

SELECTIVE QUANTUM STATE TOMOGRAPHY (SQST)

Benefits:

- Data samples of constant size (no dimension scaling),
- Can be repeated M times at a very low cost, i.e. $N \sim log M$
- Measurements are computationaly cheap, e.g. linear depth ${\sim}n$
- Post-processing is very simple, no need to store and manipulate exp. large matrices
- J. Morris and B. Dakić, arXiv:1909.05880 (2019), H. Huang and R. Kueng, arXiv:1908.08909 (2019).

MEASURING OFF-DIAGONAL ELEMENTS

<u>Classical task</u>: Given unkown distribution $(p_1, ..., p_d)$ what is the minimal number of runs nedeed to estimate all p_k 's to a given accuracy \in ?

 $max_k |p_k - p_k^{est}| < \epsilon$ Tomography in MAX norm $N = O\left(\log\frac{d}{\delta}/\varepsilon^2\right) \qquad \text{(Kamath15, Aaronson18)}$

Quantum task (Selective Quantum State Tomography): Given unkown state ρ what is the min number of runs nedeed to estimate all ρ_{ij} 's to a given accuracy ϵ ?

 $max_{ij}|\rho_{ij}-\rho_{ij}^{est}|<\epsilon$ Tomography in MAX norm

Our result:

- Random sampling from mutually unbiases bases (MUBs via linear depth $\sim n$ circuits)
- To extract M elements to accuracy ϵ

 $N = O(\log M / \varepsilon^2)$

- Full tomo in MAX norm (i.e. all elements) reuqires $O(\log d / \epsilon^2)$ copies,
- Applied to to the full (trace-norm) tomo results in $\tilde{O}(d^3/\epsilon^2)$ copies, which is optimal scaling.
- J. Morris and B. Dakić, arXiv:1909.05880 (2019).

CLASSICAL SHADOWS

- <u>SQST</u>: POVM elements are MUBs known as quantum 2-designs (Morris&Dakić, arXiv:1909.05880, 2019).
- Efficient estimation in 1-norm: $||A||_1 = \sum_{ij} |a_{ij}| \le K$ $N = O(K^2 \epsilon^{-2} log M)$
- <u>CLASSICAL SHADOWS</u>: POVM elements are random Clifford circuits, i.e. 3-designs (Huang&Kueng, arxiv:1908.08909, 2019).
- Efficient estimation in Frobenius norm: $||A||_2 = \sum_{ij} |a_{ij}|^2 \le K$ $N = O(K^2 \epsilon^{-2} log M)$

<u>APPLICATIONS</u>: fidelity estimation, off-diagonal elements (coherence), short-range observables (Hamiltonian, energy), entaglement detection, state verification etc.

• H. Huang and R. Kueng, arXiv:1908.08909 (2019), H. Huang, R. Kueng and J. Preskill, Nature Physics 16, 1050 2020.

SUMMARY

- **<u>Partial tomography</u>**: Avoid full tomography and directly extract/verify desired quantites
- Very powerful for large-scale systems:
- a) <u>Dimension demarcation</u>
- b) Fast convergence
- c) Low computational complexity
- d) Simple post-processing

References:

- 1. S. Aaronson, SIAM Journal on Computing 2019, 49, 5 STOC18,
- 2. J. Morris, V. Saggio, A. Gočanin and B. Dakić, Advanced Quantum Technologies, 2021, review article,
- 3. A. Dimić and B. Dakić, npj Quantum Information 4, 11, 2018,
- 4. V. Saggio, A. Dimić, C. Greganti, L. A. Rozema, P. Walther, B. Dakić, Nature physics 15, 935, 2019,
- 5. A. Dimić, I. Šupić and B. Dakić, Phys. Rev. X Quantum 3, 010317 (2022),
- 6. H. Huang and R. Kueng, arXiv:1908.08909 (2019),
- 7. H. Huang, R. Kueng and J. Preskill, Nature Physics 16, 1050, 2020.

Vienna Center for Quantum Science and Technology

wien wien

THANK YOU!

P. Walther