Quantum-orbit theory in strong-laser-field physics

Dejan B. Milošević

University of Sarajevo, Faculty of Science \& Academy of Sciences and Arts of Bosnia and Herzegovina

Beograd, August 30, 2022

Outline

- Strong-laser-field processes
- High-order processes, 3-step model
- Feynman path integral, strong-field approximation, quantum-orbit theory
- Examples - linear polarization
- direct electrons, double-slit exp. in time
- rescattered electrons, high-order ATI
- Examples - elliptical polarization
- multiplateau structures
- negative travel time
- Examples - tailored (complex) fields
- bicircular, BEOTC fields (HHG, HATI)

STRONG-FIELD PROCESSES

- Laser-assisted processes
- Electron-atom scattering
(Weingartshofer et al. 1977)
- X-ray-atom scattering
- Electron-ion recombination

- Laser-induced processes
- Above-threshold ionization (ATI)
(Agostini et al. 1979)
- Above-threshold detachment
- High-harmonic generation (HHG)
- Non-sequential multiple ionization

High-order ATI (Paulus et al. 1993)

Figure 1. ATI spectra recorded in July 1993 using a femtosecond laser system consisting of a dye colliding-pulse mode-locked oscillator and a dye amplifier pumped by a copper-vapor laser. The wavelength was 630 nm , the pulse duration 40 fs , and the intensity corresponded to $U_{\mathrm{p}}=4.5 \mathrm{eV}$. Besides the ATI plateau and its disappearance for circular polarization, also some of the effects
W. Becker, S. Goreslavski, D. B. Milošević, and G. G. Paulus,

The plateau in above-threshold ionization: the keystone of rescattering physics
J. Phys. B 51, 162002 (2018) Topical Review

Three-step model (1993)

- Recollision during small part of the optical cycle \rightarrow Attoscience
- Linearly polarized laser field \rightarrow linear trajectories (1D), high-harmonics lin. pol.

High-order harmonic generation (1987)

S-matrix theory

$$
M_{f i}=\lim _{t \rightarrow \infty}\left\langle\psi_{f \rightarrow \infty}(t)\right| \hat{U}\left(t, t^{\prime}\right)\left|\psi_{i}\left(t^{\prime}\right)\right\rangle
$$

SFA (Strong Field Approximation) \Rightarrow
$M_{\mathrm{fi}} \propto \int_{-\infty}^{\infty} d t_{\mathrm{f}} \int d^{3} \vec{p} \int_{-\infty}^{t_{5}} d t_{\mathrm{i}}\left\langle\psi_{\mathrm{f}}\right| H_{\mathrm{f}} U_{\mathrm{fi}}^{(\mathrm{L})} H_{\mathrm{i}}\left|\psi_{\mathrm{i}}\right\rangle \mathrm{e}^{i S\left(t_{\mathrm{i}}, t_{\mathrm{i}} ; \vec{p}\right) / \hbar}$
SPM (Saddle Point Method) \Rightarrow
$\frac{\partial S}{\partial t_{\mathrm{i}}}=\frac{\partial S}{\partial \vec{p}}=\frac{\partial S}{\partial t_{\mathrm{f}}}=0 \Rightarrow M_{\mathrm{fi}} \propto \sum_{\substack{\text { relevant } \\ \text { paths } \\ \text { quantum } \\ \text { orbitis } s}} A_{\mathrm{fis}} \exp \left(i \Phi_{\mathrm{fis}}\right)$

FEYNMAN's PATH INTEGRAL

Classical limit: $S \gg \hbar$, Hamilton principle : $\delta S=0$ However, the problem is that the connection with path integrals is made by intuition and analogy, i.e., not by an explicit use of the path-integral formalism.

For details, see: D. B. Milošević, J. Math. Phys. 54, 042101 (2013)

Phase space path-integral formalism

The momentum-space matrix element of the total time-evolution operator is sliced into $N+1$ time-evolution operators, each acting across an infinitesimal time slice of width $\varepsilon=$ $t_{n}-t_{n-1}=\left(T_{\mathbf{p}}-\tau\right) /(N+1)$. We denote $\mathbf{p}^{\prime}=\mathbf{p}_{N+1}, \mathbf{p}^{\prime \prime}=\mathbf{p}_{0}, t_{N+1}=T_{\mathrm{p}}, t_{0}=\tau$, and obtain

$$
\begin{aligned}
\left\langle\mathbf{p}^{\prime}\right| U\left(T_{\mathrm{p}}, \tau\right)\left|\mathbf{p}^{\prime \prime}\right\rangle & =\prod_{n=1}^{N}\left[\int d \mathbf{p}_{n}\right] \prod_{n=1}^{N+1}\left[\int \frac{d \mathbf{r}_{n}}{(2 \pi)^{3}}\right] e^{i \mathcal{A}_{N}} \\
& =\int_{\left(\mathbf{p}^{\prime \prime}, \tau\right) \rightarrow\left(\mathbf{p}^{\prime}, T_{\mathrm{p}}\right)} \mathcal{D}^{\prime} \mathbf{p} \int \frac{\mathcal{D} \mathbf{r}}{(2 \pi)^{3}} e^{i \mathcal{A}[\mathbf{p}, \mathbf{r}]}
\end{aligned}
$$

Classical canonical action for the paths $\mathbf{r}(t), \mathbf{p}(t)$ in phase space

$$
\begin{aligned}
\mathcal{A}[\mathbf{p}, \mathbf{r}] & =\int_{\tau}^{T_{\mathrm{p}}} d t[-\dot{\mathbf{p}}(t) \cdot \mathbf{r}(t)-H(\mathbf{p}, \mathbf{r}, t)] \\
H(\mathbf{p}, \mathbf{r}, t) & =\mathbf{p}^{2}(t) / 2+\mathbf{r}(t) \cdot \mathbf{E}(t)+V(\mathbf{r}(t))
\end{aligned}
$$

Total Hamiltonian: $H(t)=H_{\mathrm{A}}+V_{\mathrm{L}}(t), H_{\mathrm{A}}=H_{0}+V(\mathbf{r}), V_{\mathrm{L}}(t)=\mathbf{r} \cdot \mathbf{E}(t)$
Expansion in powers of the atomic potential $V(\mathbf{r})$
\Rightarrow Strong-Field Approximation (SFA)

$$
\left\langle\mathbf{p}^{\prime}\right| U\left(T_{\mathrm{p}}, \tau\right)\left|\mathbf{p}^{\prime \prime}\right\rangle=\sum_{m=0}^{\infty} U_{\mathbf{p}^{\prime} \mathbf{p}^{\prime \prime}}^{(m)}\left(T_{\mathrm{p}}, \tau\right)
$$

$$
\begin{aligned}
U_{\mathbf{p}^{\prime} \mathbf{p}^{\prime \prime}}^{(n)}\left(T_{p}, \tau\right)= & (-i)^{m} \prod_{j=1}^{m}\left[\int d \mathbf{k}_{j} V\left(\mathbf{k}_{j}\right) \int_{\tau_{j-1}}^{T_{p}} d \tau_{j}\right] \delta\left(\tilde{\mathbf{p}^{\prime}}-\tilde{\mathbf{p}^{\prime \prime}}+\sum_{j=1}^{m} \mathbf{k}_{j}\right) \\
& \times \exp \left\{-\frac{i}{2} \sum_{l=0}^{m} \int_{\tau_{l}}^{\tau_{l+1}} d t\left[\tilde{\mathbf{p}^{\prime}}+\mathbf{A}(t)+\sum_{j=l+1}^{m} \mathbf{k}_{j}\right]^{2}\right\}
\end{aligned}
$$

D. B. Milošević, J. Math. Phys. 54, 042101 (2013)

Detailed derivation in App. A in: Phys. Rev. A 96, 023413 (2017)

$m=0:$ standard SFA

$$
U_{\mathbf{p}^{\prime} \mathbf{p}^{\prime \prime}}^{(0)}\left(T_{p}, \tau\right)=\delta\left(\tilde{\mathbf{p}^{\prime}}-\tilde{\mathbf{p}^{\prime \prime}}\right) \exp \left(i \mathcal{A}^{(0)}\right), \quad \mathcal{A}^{(0)}=-\int_{\tau}^{T_{p}} \frac{d t}{2}\left[\tilde{\mathbf{p}^{\prime}}+\mathbf{A}(t)\right]^{2} .
$$

$$
m=1: \text { improved SFA (rescattering) }
$$

$$
\begin{gathered}
U_{\mathbf{p}^{\prime} \mathbf{p}^{\prime \prime}}^{(1)}\left(T_{p}, \tau\right)=-i V\left(\tilde{\mathbf{p}^{\prime \prime}}-\tilde{\mathbf{p}^{\prime}}\right) \int_{\tau}^{T_{p}} d \tau_{1} e^{i \mathcal{A}^{(1)}}, \\
\mathcal{A}^{(1)}=-\int_{\tau_{1}}^{T_{p}} \frac{d t}{2}\left[\tilde{\mathbf{p}^{\prime}}+\mathbf{A}(t)\right]^{2}-\int_{\tau}^{\tau_{1}} \frac{d t}{2}\left[\tilde{\mathbf{p}^{\prime \prime}}+\mathbf{A}(t)\right]^{2} .
\end{gathered}
$$

$m=2$: double rescattering SFA

$$
\begin{gathered}
U_{\mathbf{p}^{\prime} \mathbf{p}^{\prime \prime}}^{(2)}\left(T_{p}, \tau\right)=(-i)^{2} \int d \mathbf{k} V\left(\tilde{\mathbf{p}^{\prime \prime}}-\mathbf{k}\right) V\left(\mathbf{k}-\tilde{\mathbf{p}^{\prime}}\right) \int_{\tau}^{T_{p}} d \tau_{1} \int_{\tau_{1}}^{T_{p}} d \tau_{2} e^{i \mathcal{A}^{(2)}}, \\
\mathcal{A}^{(2)} \equiv-\int_{\tau_{2}}^{T_{p}} \frac{d t}{2}\left[\tilde{\mathbf{p}^{\prime}}+\mathbf{A}(t)\right]^{2}-\int_{\tau_{1}}^{\tau_{2}} \frac{d t}{2}[\mathbf{k}+\mathbf{A}(t)]^{2}-\int_{\tau}^{\tau_{1}} \frac{d t}{2}\left[\tilde{\mathbf{p}^{\prime \prime}}+\mathbf{A}(t)\right]^{2} .
\end{gathered}
$$

Phase space path-integral formalism semiclassical approximation

Expansion in powers of fluctuations around classical trajectories

$$
\begin{gathered}
\delta \mathbf{r}(t)=\mathrm{r}(t)-\mathbf{r}_{\mathrm{cl}}(t), \quad \delta \mathbf{p}(t)=\mathbf{p}(t)-\mathbf{p}_{\mathrm{cl}}(t), \\
\left\langle\mathbf{p}^{\prime}\right| U\left(T_{p}, \tau\right)\left|\mathbf{p}^{\prime \prime}\right\rangle^{(\mathrm{scl})}=\sum_{\mathrm{traj}} F \exp \left(i \mathcal{A}^{(\mathrm{cll})}\right), \\
\mathcal{A}^{(\mathrm{cl})}=-\int_{\tau}^{T_{p}} d t\left[\frac{\mathbf{p}_{\mathrm{cl}}^{2}(t)}{2}+V\left(\mathbf{r}_{\mathrm{cl}}(t)\right)-\mathbf{r}_{\mathrm{cl}}(t) \cdot \nabla V\left(\mathbf{r}_{\mathrm{cl}}(t)\right)\right]
\end{gathered}
$$

F - quadratic fluctuation integral
[App. B in: D. B. Milošević, Phys. Rev. A 96, 023413 (2017)]
Final momenta $\mathbf{p}^{\prime}=\mathbf{p}_{\mathrm{cl}}\left(T_{\mathrm{p}}\right)$, initial momenta $\mathbf{p}^{\prime \prime}=\mathbf{p}_{\mathrm{cl}}(\tau)$:

$$
\mathbf{p}^{\prime}-\mathbf{A}\left(T_{p}\right)-\mathbf{p}^{\prime \prime}+\mathbf{A}(\tau)+\int_{\tau}^{T_{p}} d t \nabla V\left(\mathbf{r}_{\mathrm{cl}}(t)\right)=\mathbf{0}
$$

$\mathrm{SPM}: M_{\mathrm{fi}}^{(1)} \propto \quad \sum \quad A_{\mathrm{fis}} \exp \left(i \Phi_{\mathrm{fis}}\right), t_{\mathrm{i}}, t_{\mathrm{f}}, \vec{k} \in C$ relevant paths: quantum orbits s
(I) $\frac{\partial S}{\partial t_{\mathrm{i}}}=0 \Rightarrow-I_{P}=\frac{1}{2}\left[\vec{k}+\vec{A}\left(t_{\mathrm{i}}\right)\right]^{2}$
(II) $\frac{\partial S}{\partial \vec{k}}=\overrightarrow{0} \Rightarrow\left(t_{\mathrm{f}}-t_{\mathrm{i}}\right) \vec{k}=\int_{t_{\mathrm{i}}}^{t_{\mathrm{f}}} \vec{A}(\tau) d \tau \Leftrightarrow \vec{r}\left(t_{\mathrm{f}}\right)=\vec{r}\left(t_{\mathrm{i}}\right)$
(III) $\frac{\partial S}{\partial t_{\mathrm{f}}}=0 \Rightarrow \frac{1}{2}\left[\vec{k}+\vec{A}\left(t_{\mathrm{f}}\right)\right]^{2}=\frac{1}{2}\left[\vec{p}_{\mathrm{f}}+\vec{A}\left(t_{\mathrm{f}}\right)\right]^{2}$

Forward- and backward-scattering in strong-field ionization

SPM for HATI - quantum-orbit theory

Classification of the saddle-point solutions: $\alpha \beta m$

Multiindex $\alpha \beta m$: For $-\left(m+\frac{1}{2}\right) T \leq t_{\mathrm{i}} \equiv t_{0} \leq-\left(m-\frac{1}{2}\right) T, m=0,1,2, \ldots$, there are two pairs of solutions.
The pair having the longer (shorter) travel time carries the index $\beta=-1(\beta=+1)$. Each pair again consists of two orbits with slightly different travel times: long and short (α) [PRA 76, 053410 (2007)]

3100 nm, lin. pol.

Quantum orbits

- Introducing complex solutions $\left\{t_{0}, t_{r}, \mathbf{k}_{\mathrm{st}}\right\}$ of the saddle-point equations into Newton's equation we obtain complex trajectories. Quantum orbits are defined as complex trajectories for real time:

$$
\mathbf{r}(t)=\left\{\begin{array}{lll}
\left(t-t_{0}\right) \mathbf{k}_{\mathrm{st}}+\int_{t_{0}}^{t} \mathbf{A}\left(t^{\prime}\right) d t^{\prime} & \text { if } & \operatorname{Re} t_{0} \leqslant t \leqslant \operatorname{Re} t_{r} \\
\left(t-t_{r}\right) \mathbf{p}+\int_{t_{r}}^{t} \mathbf{A}\left(t^{\prime}\right) d t^{\prime} & \text { if } \quad t>\operatorname{Re} t_{r}
\end{array}\right.
$$

- For the complex ionization time t_{0}, the electron orbit departs from the origin $\mathbf{r}\left(t_{0}\right)=\mathbf{0}$.
- For the complex rescattering time t_{r}, the electron orbit returns to the origin $\mathbf{r}\left(t_{r}\right)=\mathbf{0}$.
- $\operatorname{Rer}\left(\operatorname{Re} t_{0}\right) \neq 0 \Rightarrow$ the electron is 'born' at the 'exit of the tunnel'

$\mathrm{H}^{-}, 10600 \mathrm{~nm}, 10^{11} \mathrm{~W} / \mathrm{cm}^{2}, \theta=0^{\circ}$

$$
E_{\mathrm{p}}=\{0.67, \ldots, 2.45\} U_{\mathrm{p}}
$$

Outline

- Strong-laser-field processes
- High-order processes, 3-step model
- Feynman path integral, strong-field approximation, quantum-orbit theory
- Examples - linear polarization
- direct electrons, double-slit exp. in time
- rescattered electrons, high-order ATI
- Examples - elliptical polarization
- multiplateau structures
- negative travel time
- Examples - tailored (complex) fields
- bicircular, BEOTC fields (HHG, HATI)

Foundations of Quantum Mechanics

 Double slit experiment Which way experiment
Frankfurter Allgemaine Zeitung, März 6, 2006

Der Doppelspalt in etwas anderem Licht

Deutsche Forscher verwirklichen ein klassisches Experiment: Beugung mit extrem kurzen Laserpulsen

Das Doppelspalt-Experiment ist ein dlassischer Interferenzversuch und jedium vertraut. Das Experiment, bei dem arsprünglich ein Lichtstrahl in zwei sich egenseitig uberlagernde Strahlen aufgecilt wurde, war für die Entwicklung der Lichtwellentheoric im 19. Jahrhundert der Quantenphysik. Auch heute noch findet das Doppelspalt-Experiment in bgewandelter Form viele Anwendungen. So haben Wissenschaftler vom Max-Planck-Institut für Ouantenoptik n Garching cine ungewölinliche Version es Versuchs ersonnen
iments ist etwa zweihundert Jahre a fallt eine Welle durch zwei nebencinnderliegende Schlitze, so läßt sich auf inem dahinter befindlichen Schirm in charakteristisches Interferenzmuster aus hellen und dunklen Streifen beob-
achten. Es ruhrt von den beiden Teilwelen her, die von je einer der beiden Offnungen ausgehen und sich gegenseitig uberlagern. An den hellen Stellen des Schirms verstärken sie sich, an den du en löschen sie sich gegenseitig aus. ang es dem britischen Physiker Thomas Young auf diese Weise, die Wellennatur des Lichts nachzuweisen. Später ist in bgewandelten Versionen des Experiments demonstriert worden, daß auch ronen, Neutronen und Atome, ja sogar Molekule zeigen ebenfalls ein charaktefistisches Interferenzmuster, wenn sie eien Doppelspalt passieren. Dabei ist es aicht erforderlich, daß ein Teilchen den einen und ein zweites den anderen Weg immt. Experimente, bei denen einzelpalt geschickt wurden, haben gezeigt, daß cin Photon quasi mit sich selbst inerferieren kann. Entscheidend ist, daB dem Teilchen zwei unterscheidbare, aber gleichwertige Wege zur Verfugung stehen, auf denen es sein Ziel - einen Schirm oder Detektor - erreichen kann.
Dic Wissenschaftler vom Max-Planck-Institut fur Quantenoptik in Garching haben nun ein besonders origineles Intefferenzexperiment verwirklicht. Das Ungewöhnliche daran: Eine Schlitzblende im eigentlichen Sinn gibt es in diesem Falle sind es Elektronen insschlagen können, werden durch eien extrem kurzen Laserpuls geschar fen, dessen sinusförmig oszillierendes dektrisches Feld aus nur wenigen
Schwingungszyklen besteht. Die Wellenberge des Feldes wirken dabci gewisser maßen wio dic Schlitze ciner Blende, die ich nacheinander offnen und so den Teilthen furr cinen kurzen Moment verschicdene Wege anbieten, auf denen sie entkommen können. Mit den Laserpuls In ihrem Experiment haben die F cher um Ferenc Krausz die Lichtblitze schlaren wurden Ein schlagen wurden. Ein Argonatom kann
man sich dabei stark vereinfacht vorstellen als cinen Apfelbaum, an dem gerut telt wird, erst zur cinen, dann zur ande ren Scite. Nur wenn das kräftig genug ge schieht, können die Apfel herunterfal
len bezichungsweise die Elektronen Ien bezichungswcise die Elektronen de Aie freigesetzten Teilchen wurden durch das elektrische Feld des Lichtpulses in Richtung von zwei sich gegenüberstehen den Detektoren beschleunigt. Die Nach weisgerate hatten zum Ort des Gesche hens den gleichen Abstand.
Zeitschrift _Physical Review Letters (Bd. 95, Nr. 040401) berichten, unter schieden sich die beiden gemessene Elektronenspektren deutlich voneinan der. Während das eine ein Interferenz muster zeigle, wie man cs von cinem

Doppelspalt-Experiment erwarten wür-

 de, wies das andere Spektrum keineInterferenzstruktur auf. Die Elektronen haben sich genauso verhalten, als ob sie durch einen einfachen Spalt geflogen wären.
Das sinusformig schwingende elek tri-
sche Feld hatte jedem freigesetzen sche Feld hatte jedem freigesetzten Elek-
tron - entsprechend der Zahl und der răumlichen Lage der Schwingungsmaxima - ein oder zwei Fluchtwege eroffnet, auf denen die Teilchen entweder zum cinen oder zum anderen Detektor gelan nem Schwingungsmaximum ausgesetzt hatte es auch nur eine Möglichkeit, dem Argonatom zu enkommen. Dement sprechend trat auch kein Interferenzsignal auf. Anders ber zwei Schwingungs ten. Das entsprach gewissermaßen der Situation, daß ein Teilchen einen Doppelspalt passiert. Folglich war auch in el-
charakteristisches Streifenmuster zu erkennen.
Dierkunst der Garchinger Physiker terkunst der Garchinger Physiker vor ten den zeitlichen Verlauf und die Phase jeden Laserpulses bis auf wenige Attose kunden (trillionstel Sekunden) gena
einstellen. Das war kein leichtes Unter fangen - selbst für Ferenc Krausz, de als Pionier auf dem Gebiet der Attose kundenphysik gilt und für seine Leistungen kürlich mit dem renommierte Durch die Interferenzmessungen erhof fen sich die Wissenschaftler Aufschluß darüber, wie dic Elektronen mit dem schnell oszillierenden Lichtield wechse wirken, also ob sie gewissermaßen wie
die Apfel bei der leisesten Berithrun vom Baum fallen oder ob sie ziemlich fest an den Asten hängen und sich erst nach krâftigen Schuitteln vom Baum lösen.

Rescattered quantum orbits in space and time

 ionization time $=\mathrm{t} \downarrow \quad \downarrow \mathrm{t}=$ recollision time

The black box of S-matrix theory

... has been made transparent

Outline

- Strong-laser-field processes
- High-order processes, 3-step model
- Feynman path integral, strong-field approximation, quantum-orbit theory
- Examples - linear polarization
- direct electrons, double-slit exp. in time
- rescattered electrons, high-order ATI
- Examples - elliptical polarization
- multiplateau structures
- negative travel time
- Examples - tailored (complex) fields
- bicircular, BEOTC fields (HHG, HATI)

Quantum orbits for elliptical polarization: Experiment vs. theory

$$
\xi=0.36
$$

xenon at $0.77 \times 10^{14} \mathrm{Wcm}^{-2}$

The plateau becomes a staircase

The shortest orbits are not always the dominant orbits

Salieres, Carre, Le Deroff, Grasbon, Paulus, Walther, Kopold, Becker, Milosevic, Sanpera, Lewenstein Science 292, 902 (2001)

D. B. Milošević and W. Becker

Negative-travel-time quantum orbits in strong-field ionization by an elliptically polarized laser field

Phys. Rev. A 105, L031103 (2022)

Linear polarization: $t_{0 s}, t_{s} \leftrightarrow T-t_{0 s}^{*}, T-t_{s}^{*}$
Elliptical polarization - bifurcation: $(\alpha, \beta, m),(\alpha, \beta, m) *$

Complex-time quantum orbits

Milošević, PRA 90, 063414 (2014); Milošević, Becker, PRA 105, L031103 (2022)

Outline

- Strong-laser-field processes
- High-order processes, 3-step model
- Feynman path integral, strong-field approximation, quantum-orbit theory
- Examples - linear polarization
- direct electrons, double-slit exp. in time
- rescattered electrons, high-order ATI
- Examples - elliptical polarization
- multiplateau structures
- negative travel time
- Examples - tailored (complex) fields
- bicircular, BEOTC fields (HHG, HATI)

Tailored/complex fields

- Linearly polarized:
- Monochromatic
- Bichromatic
- Few-cycle pulses:
$\sin ^{2}$ envelope, total pulse duration n_{p} o.c. 3-colors: $\omega, \omega \pm \omega / n_{p}$ carrier-envelope phase
- Elliptically polarized monochromatic
- Bichromatic $r \omega-s \omega$ elliptically polarized $\omega_{r}, \omega_{s}, \varepsilon_{r}, \varepsilon_{s}, I_{r}, I_{s}, \varphi_{r s}$
- pulses, envelopes, CEPs, delays
- Bicircular field
- OTC field
- The dynamics of electrons driven by a linearly polarized field is one-dimensional
- Find better way to explore structure / dynamics of more complex targets such as molecules
- Find more appropriate field configurations that possess particular symmetry properties and the possibility that the laser field driven liberated electron returns to the parent ion. Solutions:
- Bicircular field which consists of two coplanar counter-rotating circularly polarized fields of frequencies $r \omega$ and $s \omega$
- Orthogonaly polarized two-color (OTC) field with frequencies $r \omega$ and $s \omega$ and relative phase φ

HHG by bicircular field

Along these three segments, between ionization and recombination the field is approximately linearly polarized

$3 \omega-5 \omega$

- Proc. Natl. Acad. Sci. U.S.A. 112, 14206 (2015)
- J. Mod. Opt. 64, 971 (2017)

A. Circularly polarized soft X-ray beams are generated by focusing counter-rotating circularly polarized bichromatic lasers at $0.79 \mu \mathrm{~m}$ and $1.3 \mu \mathrm{~m}$ into a gas-filled waveguide. This source is then used for XMCD in transmission geometry. B. Circular HHG spectrum exhibits a peak-pair structure, with a separation within each pair of $\omega_{1}-\omega_{2}$, while different pairs are separated by $\omega_{1}+\omega_{2}$. C. HHG spectra transmitted through a $\mathrm{Gd} / \mathrm{Fe}$ multilayer as the magnetization direction is parallel (red) and antiparallel (blue) to HHG propagation direction.

Theory: D. B. Milošević and W. Becker Phys. Rev. A 62, 011403(R) (2000) Phys. Rev. A 61, 063403 (2000)

Experiment: 3D atto metrology, Murnane et al Science Advances 2, e1501333 (2016)

(H)ATI by bicircular field

ATI - direct electrons only

linear color code

log. color code

Vector potential: red line

The distribution follows the vector potential: $\mathbf{p}=-\mathbf{A}(\mathrm{t})$
A. Kramo, E. Hasović, D. B. Milošević, and W. Becker, Laser Phys. Lett. 4, 279 (2007) E. Hasović, W. Becker, and D. B. Milošević, Opt. Express 24, 6413 (2016)

ATI, Ne, $2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}, 800 \mathrm{~nm}+400 \mathrm{~nm}$

D. B. Milošević, W. Becker, Phys. Rev. A 93, 063418 (2016)

forward scattering

$$
(v, \rho, \mu)=(1,0,0)
$$

forward scattering
$(\nu, \rho, \mu)=(\pm 1,2,0)$

exact numerical
Building the velocity map from pairs of orbits

$$
\begin{gathered}
I_{1}=I_{2}=2 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2} \\
\lambda_{1}=\lambda_{2} / 2=800 \mathrm{~nm} \\
\text { neon }
\end{gathered}
$$

backward scattering
$(\alpha, \beta, m)=(\pm 1,1,0)$
3 pairs of orbits as given on the left

E. Hasović, W. Becker, D. B. Milošević, Opt. Express 24, 6413 (2016)

Orthogonally polarized two-color

 OTC laser field$$
\mathbf{E}(t)=E_{r} \cos (r \omega t) \hat{\mathbf{e}}_{x}+E_{s} \cos (s \omega t+\phi) \hat{\mathbf{e}}_{y}
$$

OTC $r \omega$-s ω laser field with the relative phase ϕ Milošević, Becker, Phys. Rev. A 100, 031402(R) (2019) $\omega-3 \omega$, unusual shape, HH ellipticity. PRA 102, 023107 (2020): BEOTC, small $\varepsilon \rightarrow$ large ε_{H} Habibović, Becker, Milošević: molecules

$$
\begin{gathered}
\mathbf{E}_{1}(t)=\frac{E_{1}}{\sqrt{1+\varepsilon_{1}^{2}}}\left[\hat{\mathbf{e}}_{x} \sin (r \omega t)-\varepsilon_{1} \hat{\mathbf{e}}_{y} \cos (r \omega t)\right] \\
\mathbf{E}_{2}(t)=\frac{E_{2}}{\sqrt{1+\varepsilon_{2}^{2}}}\left[\hat{\mathbf{e}}_{y} \sin (s \omega t+\phi)-\varepsilon_{2} \hat{\mathbf{e}}_{x} \cos (s \omega t+\phi)\right]
\end{gathered}
$$

$\mathrm{He}, 2200 \mathrm{~nm}, \omega-3 \omega, I_{1}=8 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}, I_{3}=7 \times 10^{14} \mathrm{~W} / \mathrm{cm}^{2}$

Conclusions and perspectives

Bicircular and BEOTC field driven processes

- 1D (linear) \rightarrow 2D (trajectories unfold in a plane)

Elliptically polarized high harmonics (selection rules, chiral molecules, magnetic materials, etc.)

- Exploration of molecular symmetries using dynamical symmetry of the fields

PRA 94, 033419 (2016);
Mol. Phys. 115, 1750 (2017)

Spin polarized electrons - attospin PRA 93, 051402(R) (2016); 98, 053420 (2018)

Conclusions and perspectives

Various field / pulse combinations

- Few-cycle pulses, trifurcation

PRL 126, 113201 (2021)

HHG - PRL 81, 1837 (1998)

- Static electric field, PRL 81, 5097 (1998)

Magnetic-field-induced intensity revivals in HHG Milosevic, Starace, PRL 82, 2653 (1999)

- HHG, cir + static, Phys. Lett. A 355, 368 (2006)
- Bicircular $\omega-\omega$ fc, Las. Phys. Lett. 3, 200 (2006)
- OTC + crossing angle, ...

Thank you for

your attention!

