ANISOTROPY OF THE QGP DROPLET EXPLORED THROUGH HIGH- p_{\perp} DATA Stefan Stojku, Institute of Physics Belgrade

IN COLLABORATION WITH: MAGDALENA DJORDJEVIC, MARKO DJORDJEVIC, JUSSI AUVINEN, LIDIJA ZIVKOVIC AND PASI HUOVINEN

INTRODUCTION

- Quark-gluon plasma is a new form of matter, which consists of interacting quarks, antiquarks and gluons
- Energy loss of high energy particles traversing QCD medium is an excellent probe of QGP properties.
- High energy particles:
 - Are produced only during the initial stage of QCD matter
 - Significantly interact with the QCD medium
 - Perturbative calculations are possible
- Theoretical predictions vs. experimental data.

INTRODUCTION

- Dynamical Radiative and Elastic ENergy Loss Approach: a versatile and fully optimized suppression calculation procedure.
- Capable of generating high-*p*_⊥ predictions for:
 - different collision systems
 - collision energies
 - centralities
 - observables...

Versions: DREENA-C, DREENA-B, DREENA-A

QGP TOMOGRAPHY

• Our main goal: use high- p_{\perp} data to infer bulk properties of QGP.

- This energy loss is sensitive to QGP properties.
- We can realistically predict this energy loss.

- High-p_⊥ probes are excellent tomoraphy tools.
- We can use them to infer some of the bulk QGP properties.

 $T(\vec{x},$

QGP TOMOGRAPHY

• We have demonstrated this by constraining the early evolution with high- p_{\perp} data

Stefan Stojku, Jussi Auvinen, Marko Djordjevic, Pasi Huovinen, Magdalena Djordjevic, Phys. Rev. C 105, L021901

ANISOTROPY

- Initial spatial anisotropy: one of the main properties of QGP. One of the major limiting factors for QGP tomography.
- Still not possible to infer anisotropy from experimental data.
- Alternative approaches are necessary.
- We propose a novel approach, based on inference from already available high- $p_{\perp} R_{AA}$ and v_2 measurements.
- We previously argued that $v_2/(1 R_{AA})$ saturates at high- p_{\perp}
- Saturation value reflects the geometry of the system

M. Djordjevic, S. Stojku, M. Djordjevic and P. Huovinen, Phys.Rev. C Rapid Commun. 100, 031901 (2019).

This argument: analytic considerations and a simple 1+1D medium expansion

ANISOTROPY

• We here study the behavior of $v_2/(1 - R_{AA})$ in a system that expands in both longitudinal and transversal directions.

Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

■ v_2 and $1 - R_{AA}$ are directly proportional at high p_{\perp} .

- This is equivalent to a p_{\perp} -independent ratio of v_2 and $1 R_{AA}$.
- Can fluid dynamical calculations reproduce such proportionality? Can we relate this observation to the anisotropy of the system?

ANISOTROPY

DREENA-A: can accomodate any temperature profile and generate high- p_{\perp} R_{AA} and v_2 predictions.

D. Zigic, I. Salom, J. Auvinen, P. Huovinen and M. Djordjevic, arXiv:2110.01544 [nucl-th].

We visualize the temperatures partons experience in the in-plane and out-of-plane directions for different initializations and evolutions.

Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

$v_{2}/(1-R_{AA})$ results

- Does $v_2/(1 R_{AA})$ saturate?
- Does this saturation carry information on the anisotropy of the system?
- What kind of anisotropy measure is revealed through high-*p*_⊥ data?

We calculate $v_2/(1 - R_{AA})$ within DREENA-A framework:

Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

The phenomenon of $v_2/(1 - R_{AA})$ saturation is robust! How to explore if it contains information on the system anisotropy?

CONNECTION TO ANISOTROPY

Next: Plot charged hadrons' $v_2/(1 - R_{AA})$ [100GeV] vs. $\Delta L/\langle L \rangle$

Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

- Centrality classes: 10-20%, 20-30%, 30-40%, 40-50%
- Surprisingly simple relation between $v_2/(1 - R_{AA})$ and $\Delta L/\langle L \rangle$.
- Slope \approx 1.
- $v_2/(1 R_{AA})$ carries information on the system anisotropy, through $\Delta L/\langle L \rangle$.

JET-TEMPERATURE ANISOTROPY

- Define a more direct measure of anisotropy? Explicit dependence on time evolution?
- We define *jT*:

$$jT(\tau,\phi) \equiv \frac{\int dx dy \, T^3(x+\tau \cos \phi, y+\tau \sin \phi, \tau) \, n_0(x,y)}{\int dx dy \, n_0(x,y)}$$

■ *jT* is not azimuthally symmetric. We define its 2nd Fourier coefficient *jT*₂:

 $jT_{2}(\tau) = \frac{\int dx dy \, n_{o}(x, y) \int \phi \cos 2\phi \, T^{3}(x + \tau \cos \phi, y + \tau \sin \phi, \tau)}{\int dx dy \, n_{o}(x, y) \int \phi \, T^{3}(x + \tau \cos \phi, y + \tau \sin \phi, \tau)}$

JET-TEMPERATURE ANISOTROPY

■ A simple time-average of *jT*₂: jet-temperature anisotropy:

Stefan Stojku, Jussi Auvinen, Lidija Zivkovic, Pasi Huovinen, Magdalena Djordjevic, arXiv:2110.02029[nucl-th]

$$\langle jT_2 \rangle = rac{\int_{\tau_0}^{\tau_{
m cut}} d\tau \, jT_2(\tau)}{\tau_{
m cut} - \tau_0}$$

- *τ_{cut}*: the time when the center of the fireball has cooled to critical temperature *T_c*.
- $v_2/(1 R_{AA})$ shows a linear dependence on $\langle jT_2 \rangle$, with a slope close to 1.
- $v_2/(1 R_{AA})$ carries information on this property of the medium.

JET-TEMPERATURE ANISOTROPY

• We evaluated $\langle jT_2 \rangle$ from experimentally measured $R_{AA}(p_{\perp})$ and $v_2(p_{\perp})$: the fitted ratio was converted to $\langle jT_2 \rangle$.

- All three experiments lead to similar values of $\langle jT_2 \rangle$.
- Jet-temperature anisotropy provides an important constraint on bulk-medium simulations - they should be tuned to reproduce it.

CONCLUSIONS AND ACKNOWLEDGEMENTS

- High- p_{\perp} theory and data traditionally used to explore high- p_{\perp} parton interactions with QGP.
- High-p_⊥ probes can become powerful tomography tools, as they are sensitive to global QGP properties (e.g. spatial anisotropy).
- A (modified) ratio of R_{AA} and v₂ a reliable and robust observable for straightforward extraction of spatial anisotropy.
- The saturation is directly proportional to jet-temperature anisotropy.
- It will be possible to infer anisotropy directly from LHC Run 3 data: an important constraint to models describing the early stages of QGP formation.
- Synergy of more common approaches for inferring QGP properties with high-p_⊥ theory and data.

13

ACKNOWLEDGEMENTS

erc

European Research Council

Established by the European Commission

МИНИСТАРСТВО ПРОСВЕТЕ, НАУКЕ И ТЕХНОЛОШКОГ РАЗВОЈА