

Influence of the Size of Cation on the Structure and Tribological Properties of Ionic Liquids Studied with Molecular Dynamics

Dr Miljan Dašić

Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade

BPU11 CONGRESS

Serbian Academy of Sciences and Arts

29th August 2022

A) Introduction

- A1) Overview of ionic liquids (ILs)
- A2) Motivation for studying ILs
- A3) Models of ILs and methods applied

B) Key results

- B1) Bulk ILs
 - B1.1) Relaxed structure of bulk ILs
 - B1.2) NEMD shearing simulations

B2) Confined ILs

B2.1) Equilibrium behaviour of confined ILsB2.2) Cyclic extension-compression of confined ILsB2.3) Tribological behaviour of confined ILs

C) <u>Conclusions</u>

Physico-chemical characteristics of ionic liquids

- ILs are salts composed of large asymmetric organic cationic and anionic molecules
 - \rightarrow liquid state even at room temperature
 - $\rightarrow\,$ high temperature stability and low vapour pressure
- Externally controllable lubricating characteristics via application of confining solid plates and external electric fields
 - $\rightarrow\,$ formation of alternating cationic-anionic layers

ILs as lubricants – computational nanotribology

- Nanotribology: friction, lubrication and wear at nanoscale
- Ionic Liquids (ILs): high quality lubricants with wide applications

 \rightarrow relevant from fundamental and industrial aspects (designer liquids)

Experimental results: decrease of friction and wear by adding ILs and mixing them with synthetic oils: friction coefficient decreases for 60%, while wear level decreases for three orders of magnitude

Modeling the ionic liquids

• Goals of our study on ILs:

1) structural properties of bulk and confined ILs

2) nanoscopic lubrication with confined ILs as lubricants

Time-scale and length-scale of the system: nanoseconds and nanometers

- \rightarrow Coarse–Grained (CG) model of ionic liquids is adequate
- \rightarrow Interatomic potentials (Lennard–Jones (LJ) and Coulombic potential)

Realization: Molecular dynamics simulations of modelled ILs

Example of ionic molecules' coarse-graining:

Cation/anion are represented with three/one charged Lennard-Jones spheres

Cation is represented by a neutral tail attached to a cationic head Sizes of neutral tail \rightarrow modeling three different alkyl chain lengths

Relaxed structure of bulk ILs

NEMD shearing simulations of bulk ILs

Simulation setup of confined ILs

- (a) Schematic of the MD simulation setup
- (b) VMD snapshot of the xz cross-section
- (c) VMD snapshot of the yz cross-section
- (d) VMD snapshot of the xy cross-section

VMD = Visual Molecular Dynamics, a program for visualization

Equilibrium behaviour of confined ILs

Configurations in static force-distance characteristic

VMD snapshots of system configurations in characteristic points {A, B, C, D, E} in the yz cross-section

/ 11

Cyclic extension-compression of confined ILs

Configurations in dynamic force-distance characteristic

Snapshots of system configurations at characteristic points of intervals *I* and *II* with corresponding ionic density distribution along the z-axis

Tribological behaviour of confined ILs

Example of a configuration with sliding velocity V_x imposed on the Top plate

Dependence of friction force F_x acting on the Top plate on inter-plate distance d_z

/ 14

Conclusions

A mutual feature of all modeled ILs is formation of the fixed layers of ions along the solid plates due to strong ions-plate LJ interaction

- → consequence of the fixed layer stability is steep rise of the normal force at small interplate gaps
- This is an effect useful for preventing solid-solid contact and wear
- A high load-sustending capability requires strong adsorption of the lubricant to the surface of confining solid plates, while low friction requires low viscosity
- The obtained results confirm that the behaviour of ILs in confinement can be unrelated to their bulk behaviour

→ matching simultaneously, typically contradicting, low friction and pronounced anti–wear performance

General conclusion:

Design of optimal IL lubricants should take into account nanoscale properties of lubricating thin films, in which the effects of molecular-level processes are pronounced and highly relevant

Open MSc/BSc and prestigeous PhD Horizon Europe positions

Looking for collaborators interested in new technologies for energy conversion.

Industrial PhD project (>50% time in industry) with major <u>car & fuel cell manufacturers</u>.

Topic: models for fuel cell membrane

Candidates outside Serbia welcome!

<u>Funding framework:</u> EU Doctoral Network (2023-2028)

Opening: February 2023. Deadline: May 2023. Start date: October 2023.

Location: Belgrade (Serbia) / Weinheim (Germany) MSc/BSc projects for Serbian students with major <u>R&D laboratories</u>.

<u>Topic:</u> novel surfaces & magnetic materials, python coding and use of super computers

<u>Funding framework:</u> EU RISE project (2021-2025)

Deadline: open Start date: anytime

Location: Belgrade (Serbia) / Zaragoza (Spain) / / Nancy (France) / Valparaizo (Chile)

contact: igor@ipb.ac.rs (expressions of interest); mdasic@ipb.ac.rs website: ultimate-i.eu

Influence of the Size of Cation on the Structure and Tribological Properties of Ionic Liquids Studied with Molecular Dynamics

THANK YOU FOR YOUR ATTENTION!

ХВАЛА НА ПАЖЊИ!