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MOTIVATION

➢ Motivation: To identify and make a clear distinction between the different domains of scaling in finite systems.

* Findings could be of importance for mesoscopic experimental systems (magnetic/superconducting/martensitic) and other finite 

model systems manifesting criticality in their avalanche-like response in the thermodynamic limit (percolation/front propagation model 

of ferromagnets) having three (or more) domains of the related criticality controlling variable that have to be distinguished in their 

scaling analysis.

Rising interest in the study of nonequilibrium properties of the systems that evolve through avalanche-like response to 

slowly varying external conditions.

Nonequilibrium zero-temperature random field Ising model – paradigm for disordered ferromagnetic systems

▪ Scaling in the thermodynamic limit

Two domains

𝑅 < 𝑅𝑐

𝑅 > 𝑅𝑐

Three domains

𝑅 < 𝑅𝑐

𝑅𝑐 < 𝑅 < 𝑅𝑐
eff 𝐿

𝑅 > 𝑅𝑐
eff(𝐿)

➢ What with systems of finite size?



NONEQUILIBRIUM ZERO-TEMPERATURE RANDOM FIELD ISING MODEL

(NE-ZT-RFIM)

- Hamiltonian: • ferromagnetic interaction between nearest neighboring spins 𝑠𝑖 , 𝑠𝑗 (𝐽 = 1)

• external magnetic field 𝐻 increased adiabatically, i.e. to the minimal value 

causing avalanche and kept constant during its propagation

• random magnetic field ℎ𝑖 chosen so that ℎ𝑖 = 0, ℎ𝑖ℎ𝑗 = 0;

here from the Gaussian distribution 
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Local dynamical rule:    spin flips when sgn 𝑠𝑖 , ℎ𝑖
eff < 0, where

Ising spins  

𝑠𝑖 = ±1

(responsible for equilibrium properties)

Nonequilibrium dynamics is set by the

is the effective magnetic field acting on spin 𝑠𝑖



RESULTS

Numerical simulations of 3D NE-ZT-RFIM
• Lattice geometry:  cubic, equilateral 

• Boundary conditions:   periodic

• Magnetic field range:   along the whole rising part of hysteresis loop

• Driving type:  adiabatic
• Critical disorder: 𝑅𝑐= 2.16
• Critical magnetic field: 𝐻𝑐=1.435

Preceding studies (mostly by Sethna et al) system size:  up to 109 spins (linear dimension 𝐿 up to 1024)

This study:

✓ System size:  up to 8.5 ∙ 109 spins (linear dimensions in range 𝐿 = 16 − 2048 spins)

✓ Disorder:  domains 𝑅 < 𝑅𝑐 (low), 𝑅𝑐 < 𝑅 < 𝑅𝑐
eff 𝐿 (transitional), 𝑅 > 𝑅𝑐

eff(𝐿) (high)

✓ Statistics:  data averaged over up to 200 000 realizations of random magnetic field



DOMAINS OF SCALING IN FINITE SYSTEMS

Three domains

𝑅 < 𝑅𝑐

𝑅𝑐 < 𝑅 < 𝑅𝑐
eff 𝐿

𝑅 > 𝑅𝑐
eff(𝐿)

1. Domain below 𝑹𝒄

Correlation length is infinite, only 3𝐷 spanning avalanches exist

2. Transitional domain 𝑹𝒄 < 𝑹 < 𝑹𝒄
𝐞𝐟𝐟 𝑳

(vanishing in thermodynamical limit)

Finite, but large correlation length, all kinds of spanning avalanches 

are likely to appear

3. Domain above 𝑹𝒄
𝐞𝐟𝐟 𝑳

We proved that the system response is INDEPENDENT on system size 𝐿;
all avalanches are finite

𝑹𝒄
𝐞𝐟𝐟 𝑳 - the effective critical disorder, separating the domains in which the spanning avalanches appear/disappear

Transition between the domain above and below is not sharp, but has a width 𝑊(𝐿), meaning that in 

the domain 𝑅 > 𝑅𝑐
eff(𝐿) spanning avalanches may still appear provided that 𝑅 − 𝑅𝑐

eff 𝐿 ≤ 𝑊(𝐿).



➢ Fits of 𝑁1 and 𝑁2 to Gaussians

and 𝑁3 to 

NUMBER OF SPANNING AVALANCHES

▪ Spanning avalanches – avalanches 

that span the system per at least one 

of its dimensions.

In 3𝐷 cubic systems can be classified as: 

1𝐷, 2𝐷, and 3𝐷 according to the

number of spatial directions they span.

𝑹𝒄
𝐞𝐟𝐟(𝑳) estimates(𝑟 = (𝑅 − 𝑅𝑐)/𝑅 ;  1/𝜈 =0.70)



DISTRIBUTIONS OF SPANNING FIELD

▪ Spanning field, 𝑯𝒔𝒑 – the value of the external magnetic field which triggered the spanning avalanche.

𝜁 = 𝛽𝛿/𝜈 = 1.35 is mutual critical exponent, 

is the reduced spanning field, while 𝐻𝑐
eff(𝑅, 𝐿) is the effective critical field

(i.e. the value of 𝐻 at which the susceptibility curve for disorder 𝑅 and lattice size 𝐿 attains its maximum). 

The distribution 𝑁𝛼(𝐻sp; 𝑅, 𝐿) of spanning field 𝐻sp satisfies:



SUSCEPTIBILITIES, 𝑅 > 𝑅𝑐
eff(𝐿)

𝜒 = 𝑑𝑀/𝑑𝐻

Susceptibility curves in a broad range of lattice sizes obtained for the same value of disorder surpassing the 

effective critical 𝑅𝑐
eff(𝐿). 

➢ We found that in this disorder domain the susceptibility curves and the values of effective critical field 

𝐻𝑐
eff(𝐿) are independent on the lattice size 𝑳!

susceptibility



- rotational parameter 𝑏, no collapse of satisfactory quality

(e.g., B=0.39, Sethna et al, Phys. Rev. B 59 6106 (1999))

MAGNETIZATIONS AND SUSCEPTIBILITIES  (SAME 𝐿,                   )𝑅 > 𝑅𝑐
eff(𝐿)

(linear approximation)

➢ Instead, the effective reduced magnetic field 

← (𝑏 = 0.39,𝑀𝑐 = 0.9, 𝛽 = 0.035, 𝛽𝛿 = 1.81)



collapse with standard 3D NE-ZT-RFIM exponents𝑅 > 𝑅𝑐
eff(𝐿)𝐿𝑟1/𝜈 = 𝑐𝑜𝑛𝑠𝑡

▪ Problem of determining the value of critical magnetization 𝑀
𝑐

✓ Finding the effective critical magnetization                                       and extrapolating data to 𝑟 = 0;

✓ Collapsing by using the effective reduced magnetization                                         ,;



𝑅 < 𝑅𝑐𝐿𝑟1/𝜈 = 𝑐𝑜𝑛𝑠𝑡

Size-dependent behavior with notable jumps due to appearance of spanning avalanche.



𝑅𝑐 < 𝑅 < 𝑅𝑐
eff(𝐿)𝐿𝑟1/𝜈 = 𝑐𝑜𝑛𝑠𝑡

Scaling in the analogous way as the magnetizations and susceptibilities below 𝑅𝑐 . 

* transitional domain of disorders



COMPARISON OF THE UNIVERSAL SCALING FUNCTIONS FOR THE 

SUSCEPTIBILITIES PERTAINING TO THE DOMAINS

AND 𝑅 < 𝑅𝑐𝑅𝑐 < 𝑅 < 𝑅𝑐
eff 𝐿

✓ Universal scaling functions are different 

below 𝑅𝑐 and in the transitional region!



Phenomenological form:                                                                                                       ;

INTEGRATED AVALANCHE SIZE DISTRIBUTIONS

𝑅 > 𝑅𝑐
eff(𝐿)

Analytical form: 

𝐿 = 512 𝐿𝑟𝜈 = 19.92

(𝜏 + 𝜎𝛽𝛿 = 2.02, 𝜎 = 0.24)

( Τ𝜏′ = 2.03, 1 𝜎𝜈 = 2.98, 𝜈 = 1.41)

(𝐴 = 0.0147, 𝐶1 = 0.185, 𝑑1 = 0.831, 𝐶2 = 0.941, 𝑑2 = 3.52)



INTEGRATED AVALANCHE SIZE DISTRIBUTIONS

𝑅 < 𝑅𝑐 decomposition:

𝐷𝑓 = Τ1 𝜎𝜈

𝜏′ = 𝜏 + 𝜎𝛽𝛿

(left insets: 𝜏′ = 2.03)

(right insets – distributions normalized to 1: 

𝜏𝛼 = 1, 𝜏ns = 2, 𝐷𝑓 = 2.98)



INTEGRATED AVALANCHE SIZE DISTRIBUTIONS

𝑅𝑐 < 𝑅 < 𝑅𝑐
eff(𝐿)

- left insetright insets -

(𝜏′ = 2.03, 𝐷𝑓 = 2.98, 𝜎 = 0.24)



INTEGRATED NONSPANNING AVALANCHE SIZE DISTRIBUTIONS

* Scaling collapse of integrated size distributions of nonspanning avalanches for same value of 𝐿 and a range of 

disorders covering all domains. Collapse is only possible for 𝑅 > 𝑅𝑐
eff 𝐿 , while in the transitional and domain 

below 𝑅𝑐, due to 𝐿 𝑟 𝜈 ≠ const, collapse cannot be achieved.



CORRELATION FUNCTIONS

Integrated                                                 Binned                                                    Correlation length(Δ𝐻 = 0.1)

𝐿 = 1024

(𝜂 = 0.53)



CORRELATION FUNCTIONS

𝑅𝑐 < 𝑅 < 𝑅𝑐
eff(𝐿)𝑅 > 𝑅𝑐

eff(𝐿) 𝑅 < 𝑅𝑐

(𝐿𝑟𝜈 = 2.99) (𝐿𝑟𝜈 = 0.771) (𝐿|𝑟|𝜈 = 3.005)

(𝑑 + Τ𝛽 𝜈 = 3.05)



Universal critical exponents (top part) and nonuniversal scaling variables (bottom part) for adiabatically 

driven 3D NE-ZT-RFIM

3D NE-ZT-RFIM EXPONENTS



CONCLUSION
▪ We show the results of numerical study of scaling domains in the 3D NE-ZT-RFIM on equilateral cubic 

lattices in adiabatic regime.

▪ Three different disorder domains identified: above the effective critical disorder 𝑅𝑐
eff 𝐿 , below critical 

disorder 𝑅𝑐 and the transitional range of disorder 𝑅𝑐 < 𝑅 < 𝑅𝑐
eff(𝐿) spreading between the first two.

▪ For disorders above the 𝑅𝑐
eff 𝐿 +𝑊(𝐿) distributions of avalanche size, susceptibility and magnetization, 

are independent on the lattice size 𝐿.  System behaves like infinite and follows the scaling predictions valid 

in the thermodynamic limit. In two remaining ranges of disorder the system behavior is size-dependent 

permitting collapsing only of distributions with the same value of 𝐿𝑟1/𝜈 = 𝑐𝑜𝑛𝑠𝑡.  The shapes of the scaled 

avalanche distributions are different in these two regions.

▪ The value of critical magnetization 𝑀𝑐=0.3 is estimated, an alternative form for the reduced magnetic field 

ℎ that improves the data collapsing is suggested, and many additional and several alternative analytic forms

are proposed along with the values of some of the critical exponents (e.g.𝛽, 𝛽𝛿, 𝜃, 𝜂, 𝜁) and of the 

nonuniversal critical parameter 𝑏.

▪ We believe that the clear recipes introduced here could be beneficial not only for the future studies of the 

finite RFIM systems, but also in a broader context, e.g. for studies of similar models of finite systems as well 

as mesoscopic experimental systems.
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