Promising research results on a few potential applications of non-thermal plasma

Monica Magureanu

National Institute for Lasers, Plasma and Radiation Physics, Magurele, Romania Plasma Physics and Nuclear Fusion Department

• degradation of organic compounds in water – ANTIBIOTICS

Plasma agriculture

• treatment of seeds for productivity enhancement – SUNFLOWER

> Plasma processing of materials

• functionalization for catalytic activity improvement – GRAPHENE OXIDE

> Plasma synthesis of materials

• production of nanoparticles from liquid precursors – Au NANOPARTICLES

Degradation of antibiotic pollutants in water by non-thermal plasma

- > Antibiotics contaminants of emerging concern (CEC)
- High consumption, inefficient degradation \rightarrow contamination
- Negative effects on aquatic and terrestrial species
- Antimicrobial resistance

> Antibiotics degradation by non-thermal plasma – literature results

- Plasma reactor configurations and operating conditions
- Mechanisms of antibiotics degradation by non-thermal plasma

Sources of antibiotics

Main sources: Human and veterinary medicine

Other sources:

- Improper disposal of unused medicines
- Release of pharmaceutical waste from manufacturing facilities
- Accidental spills during manufacturing or distribution

Concentrations of antibiotics in various wastewaters and water bodies

- pharmaceutical manufacturing wastewater: tens of $\mu g/L$ tens of mg/L
- hospital wastewater: ng/L hundreds of μg/L
- animal farms wastewater: μ g/L hundreds of μ g/L
- effluent of wastewater treatment plants: hundreds of ng/L μ g/L
- surface water: tens of ng/L hundreds of μ g/L
- drinking water: ng/L hundreds of ng/L

Ecotoxicity of selected antibiotics towards different groups of organisms

P. Kovalakova et al., Chemosphere (2020),

doi: https://doi.org/10.1016/j.chemosphere.2020.126351

Antimicrobial resistance

- Accelerated by the presence of antibiotics in the environment at sub-lethal levels:
 - spread of mutations that promote survival
 - shorten the time bacteria need to acquire resistance to new drugs
- Coded by antibiotic resistance genes (ARGs)
 - vertical transmission
 - horizontal transmission

➢ Increasing AMR + slow development of new antibiotics → one of the most stringent public health crisis

Average global resistance rate for the specified antibiotic-pathogen combination

Laxminarayan, R. et al. The Lancet Infectious Diseases Commission on antimicrobial resistance: 6 years later. The Lancet Infectious Diseases 20, e51–e60 (2020).

Degradation of antibiotics by non-thermal plasma – the key parameters

Antibiotic Removal

$$R = \left(1 - \frac{c_t}{c_0}\right) \cdot 100$$

$$c_o - \text{ initial concentration of antibiotic}$$

$$c_t - \text{ concentration of antibiotic after the treatment time } t$$

> Mineralization (A \rightarrow CO₂ + H₂O + Inorganic, Total Organic Carbon analysis)

$$M = \left(1 - \frac{TOC_t}{TOC_0}\right) \cdot 100$$

 TOC_0 – initial content of organic carbon in solution TOC_t – organic carbon content after the treatment time t

Energy efficiency / yield (g/kWh, R 50% / 90%)

$$Y = \frac{c_0 \cdot V \cdot R}{P \cdot t} \cdot \frac{1}{100}$$
 V - solution volume
P - discharge power

Reactor design

- Most used DBD, corona discharges in contact with liquid
- Enhanced mass transfer of the active species from the plasma to the liquid
- Large plasma-liquid contact surface
 (multiple needles / wires corona)
- High surface-to-volume ratio (thin solution films, discharge in gas bubbles, water droplets, ...)
- Plasma-catalysis
- Gas recycling

Plasma-catalysis – type and role of the catalyst

	Preparation method	Antibiotic	Improvement by plasma-catalysis vs. plasma alone			Proposed role of the	
Catalyst			Degradation rate /	Energy yield	Mineralization rate /	cotalyst	Reference
			treatment time	gain	treatment time	Catalyst	
		Sulfadiazine	99% (73%) / 9 min	136%	34% (25%) / 30 min		Rong and Sun, 2013
FeSO ₄		Sullaulazine	98% (35%) / 3 min	280%	33% (25%) / 30 min	Fenton reaction	Rong et al., 2014
		Norfloxacin	89.7% (42%) /0.5 min	213%	72.5% (49.7%) / 15 min	(Fe ²⁺ /H ₂ O ₂)	Xu et al., 2020
TiO ₂	Sol-gel method		85.2% (62%) / 24 min	137%	53% (25%)	Photocatalysis - ROS (\bullet OH, \bullet O, \bullet O ₂ ⁻ , O ₃) production by photogenerated electron-hole pairs	He et al., 2014a
Bi ₂ MoO ₆	Solvent thermal method	Tetracycline	96% (62%) / 24 min	155%	63% (25%)		He et al., 2014b
rGO-TiO ₂	Modified Hummers	Flumequine	99.4% (64%) / 60 min	155%	35.8% (27.2%)		Guo et al., 2019a
nanocomposites	method for GO;		99.4% (64.8%) / 60 min	153%	35.8% (27.2%)		Guo et al., 2019d
rGO - WO₃ nanocomposites	rGO/TiO ₂ or rGO/WO ₃	Enrofloxacin	99.1% (76%) / 60 min	130%	39.9% (31.6%)		Guo et al., 2019b
TiO ₂ /WO ₃	Impregnation	Chloramphenicol	88.1% (51.3%) / 60 min	172%	42.5% (33.7%)		Guo et al., 2019c
rGO-WO ₃ -Fe ₃ O ₄ nanocomposites	Impregnation	Thiamphenicol	99.3% (59%) / 60 min	168%	45.3% (27.5%)	ROS production by photocatalysis and Fenton-like reaction	Guo et al., 2021
Ag ₃ PO ₄ /ACFs		Levofloxacin	93.2% (63%) / 18 min	148%	46% (11.6%)	ROS production by photocatalysis (UV and visible radiation)	Gong et al. 2020
Mn/γ-Al ₂ O ₃ (10 wt%)	Incipient wetness impregnation method	Tetracycline Hydrochloride	99.3% (69.7%) / 5 min (with O ₂)	142%	COD removal with air: 57% (20%)	Decomposition of O_3 with •OH generation	Wang et al., 2019
Fe-Mn GAC	Impregnation – desiccation method	Oxytetracycline	93.5% (82%) / 20 min	114%	42.3% (36.7%)	with soft generation	Tang et al., 2019

Plasma-ozonation / Gas recycling

Large efficiency improvement due to ozone recycling

Delivered energy, , kWh/m³

Effect of input energy

Higher power input \rightarrow larger concentrations of active species \rightarrow faster degradation of the target compounds

Degradation of amoxicillin in water by gas-phase pulsed corona discharge with liquid shower 1 0,9 50 pps neutral 160 50 pps 50 pps 200 pps 0,8 140 500 pps Energy efficiency, g/kWh - 50 pps Alkaline 120 0,7 200 pps mix 50 pps 50 pps 500 pps neutral 100 mix 200 pps 0,6 c/co - 200 pps alkaline mix 50 pps 80 0,5 200 pps 500 pps mix 200 pps - 500 pps alkaline 60 0,4 - mix 50pps neutral 500 pps 40 0,3 17 min mix 200pps neutral 20 0,2 0 alkaline 0,1 neutral 10 min 40 min 0 Sokolov et al., Chem. Eng. J. 334 (2018) 673–681, http://dx.doi.org/10.1016/j.cej.2017.10.071 0,5 1,5 2,5 0 2

Faster degradation for higher input energy, BUT generally lower energy efficiency

Effect of initial concentration of antibiotic

- Initial concentrations: mg/L hundreds of mg/L
- Generally first order kinetics
- $-\frac{\mathrm{d}c_t}{\mathrm{d}t} = k \cdot c_t$
- ➢ Higher initial concentration → slower removal
 - Competition for the reactive species between the parent compound and its degradation products
- \succ Higher initial concentration \rightarrow
 - ightarrow Higher amount of antibiotic removed
 - ightarrow Higher energy efficiency
 - Increase of the reaction probability with rising reactant concentration

Treatment of contaminated wastewater at the source of pollution

treatment time

treatment time

S.-P. Rong et al. / Chinese Chem. Lett. 25 (2014) 187–192, http://dx.doi.org/10.1016/j.cclet.2013.11.003

Degradation mechanism

- Example: β -lactam antibiotics amoxicillin and ampicillin
- > Hydrolysis of the β -lactam ring (A4)
- Hydroxylation: of the benzene ring (A1), of benzene ring and a methyl group (A2)
- Oxidation of the S atom (A3)
- Fragmentation of the molecule
- Mineralization

.....

.....

Evaluation of the safety of plasma treated effluent

M. Magureanu et al., J. Hazard. Mater. 417 (2021) 125481

SUMMARY – Plasma treatment of antibiotic-containing water

- Non-thermal plasma CAN degrade antibiotics
- Challenge 1: Enhancing efficiency
 - Y = mg/kWh hundreds g/kWh
 - Reactor design optimization (maximizing production of active species + plasma-liquid species transfer)
- Challenge 2: Understanding of the degradation mechanism
 - Degradation pathways intermediate products
- Challenge 3: Safety of the treated effluent
 - Toxicity (parent compound / intermediate degradation products / residual oxidants)
 - Residual biological activity (adaptation \rightarrow resistance)
- Challenge 4: Up-scaling

ACKNOWLEDGMENTS:

Florin Bilea – INFLPR

Dr. Corina Bradu – University of Bucharest

Prof. Dunpin Hong et al. – GREMI, University of Orleans

CNCS - UEFISCDI, project PN-III-P4-ID-PCE-2020-0335 (PCE 143 / 2021) CNCS - UEFISCDI, contract no. 18 BM / 2019 – GREMI, University of Orleans

References

M. Magureanu et al., J. Hazard. Mater. 417 (2021) 125481

M. Magureanu et al., Water Research 81 (2015) 124-136

M. Magureanu et al., Water Research 45, 3407-3416.

Aim of plasma agriculture: higher productivity & reduced environmental footprint

- Plasma treatment of seeds direct, indirect
- Positive effect of plasma treatment: increased germination, enhanced plant growth and plant vigor, seed decontamination, improved stress tolerance
- Surface changes \rightarrow increased hydrophilicity, water uptake
- Metabolic changes, phytohormone balance, gene regulation
- Challenges: cost of treatment, scalability, variability of the results, lack of field trials

Direct plasma treatment of sunflower seeds

packed-bed coaxial DBD

 $\Phi_{\text{inner electrode}}$ = 21.7 mm $\Phi_{\text{outer electrode}}$ = 34 mm $d_{gap} = 4.5 \text{ mm}, \text{ L} = 230 \text{ mm}$

- Laboratory tests: germination & early growth under controlled conditions
- Field tests: plants monitoring throughout the entire life span

Current waveforms - typical filamentary discharge Average power (Lissajous method) = 5 W Amount of seeds introduced in the plasma = 30 g Treatment time = 10 min

a.c. excitation, v = 50 Hz, V = 16 kV

Laboratory tests: germination – between-paper method in Petri dishes

Six replicates of 16 seeds each + 1 replicate of 10 seeds Conditions: Temperature 22 °C, 60% UR, light/darkness program 16/8 h – 7 days Measurements: germination (2rd, 3th and 4th day), radicles length (4th and 6th day)

Germination %					
	day 2 day 3 day 4				
control	81	98	98		
plasma	74	98	98		

Mean radicle length (mm)						
	day 4 day 6					
control	12.8	20.5				
plasma	11.5	18.1				

Laboratory tests – early growth – plant length

(seeds transferred in organic substrate)

Four replicates of 24 seeds each

Conditions: 25 °C, 60% UR, light/darkness program 16/8 h – 3 weeks Measurements: stem length (10th to 24th day), cotyledons (10th day),

plant length and weight – fresh and dry (30th day)

Faster plant growth for plasma treated seeds Improved growth uniformity for plasma treated seeds

Mean stem length (cm)				
	day 10	day 16	day 24	
control	0.9	3.4	3.9	
plasma	1.1	4.1	4.6	

Laboratory tests – early growth – plant weight

Field tests – plant height, number of leaves, capitulum diameter

Seed treatment: 07.04.2021 and 21.04.2021, ~ 100 g

```
Sowing: 12.04.2021 (E1), 26.04.2021 (E2), 07.05.2021 (E3)
```

Measurements: plant height, number of leaves, capitulum size (29.06-02.07.2021)

 The largest effect of plasma treatment occurs for the earliest sowing period: taller plants, with more leaves and larger capitulum diameter

- Improved growth uniformity for plasma treated seeds

- For late sowing, plasma treatment has a detrimental effect on capitulum diameter

Field tests – Harvest

30.09.2021 – measurements: capitulum size and weight, number and mass of seeds per plant \rightarrow calculation of yield

	•				
E1		E2		E3	
control	plasma	control	plasma	control	plasma
14.0	15.7	17.3	18.3	18.8	17.6

Number of seeds per capitulum						
E	1	E	2	E3		
control	plasma	control	plasma	control	plasma	
609	750	1000	1187	1117	1015	

Field tests – Harvest – calculation of yield

The mass per thousand seeds is not significantly influenced by plasma treatment for the seeds sown during the optimal period For late sowing, plasma treatment has a detrimental effect The largest effect of plasma treatment occurs for the earliest sowing period \rightarrow earlier sowing should be further investigated

Yield (kg/ha)						
E1		E	2	E3		
control	plasma	control	plasma	control	plasma	
1731	2319	3243	3807	3639	3031	
~ 34% ~ 17%						

SUMMARY – Plasma treatment of sunflower seeds

- Germination tests and early growth measurements under controlled conditions are not sufficient to predict later plants evolution
- The sowing period is important
 - Positive effect of plasma treatment for seeds sown during the optimal period (plant height, number of leaves, capitulum size, number of seeds per plant, yield)
 - Detrimental effect of plasma for late sown seeds
- Plasma treatment increased the yield with more than 30% for the earliest sowing period \rightarrow earlier sowing should be further investigated

ACKNOWLEDGMENTS:

Dr. Constantina Chireceanu et al. – R&D Institute for Plant Protection, Bucharest

CNCS - UEFISCDI, project PN-III-P4-ID-PCE-2020-0335 (PCE 143 / 2021) COST Action CA19110 "Plasma Applications for Smart and Sustainable Agriculture"

Plasma processing of materials

Improvement of catalytic activity of graphene oxide by H₂ plasma treatment

Interest – replacing noble metal catalysts with carbon-based materials – graphene

- treatment of graphene oxide in a d.c. glow discharge in H₂ (negative glow / positive column)
- test reaction hydroisomerisation of 1-octene

negative glow (NG): p = 0.1 mbar $V_a = 3 \text{ kV}, V_d = 600 \text{ V}, I_d = 1.25 \text{ mA}$

striated positive column

positive column (PC) p = 1.5 mbar $V_a = 3 \text{ kV}, V_d = 520 \text{ V}, I_d = 1.27 \text{ mA}$

 $\Phi_{tube} = 65 \text{ mm}, L_{tube} = \Phi_{cathode} = 25 \text{ mm}, \Phi_{anode} = 40 \text{ mm}$ $p_0 = 3 \times 10^{-3} \text{ mbar}, H_2 \text{ flow} = 5 - 55 \text{ mL/min}, p = 0.1 - 1.5 \text{ mbar}$

Catalytic test – hydroisomerisation of 1-octene

plasma treatment - bifunctional acidic and hydrogenating catalyst

 $p_{H_2} = 30 \text{ bar, } T = 80 \text{ °C,}$ $m_{GO} = 10 \text{ mg GO catalyst}$ 1.5 mL 1-octene, 1.5 mL of n-heptane as solvent

considerable increase in the catalytic activity of GO as a result of H₂ plasma treatment

especially for GO treated in NG

Raman measurements

a – fresh; b – spent 1^{st} cycle; c – 2^{nd} cycle

Sample	GO Precursor	H ₂ plasma-activated GO		
·		NL series	PC series	
D/G ratio – fresh catalyst	1.46	1.86	1.71	
D/G ratio – tested catalyst	1.55 – 1 st cycle	1.88	1.73	
	1 58 – 2 nd cycle			

SUMMARY – Plasma treatment of graphene oxide

- remarkable enhancement of the catalytic activity of graphene oxide, especially when treated in the NL
- higher population of defects produced by the plasma active sites \rightarrow increased conversion
- surface functionalization acidic species \rightarrow change in products distribution (skeletal isomerization)
- NL vs. PC higher electron temperature and higher dissociation of H₂ in NL

References

A. Primo et al., Green Chem. 20 (2018) 2611–2623
M. Magureanu et al., Catal. Today 366 (2021) 2–9
M. Magureanu et al., Appl. Catal. B: Environ. 287 (2021) 119962

ACKNOWLEDGMENTS:

Dr. Nicolae Mandache, INFLPR – plasma reactor design

Dr. Florin Gherendi, INFLPR – optical emission spectroscopy

Prof. Vasile Parvulescu et al., University of Bucharest – catalytic tests, graphene characterization

Prof. Hermenegildo Garcia et al., Universitat Politècnica de València – graphene synthesis and characterization

Romanian Ministry for Research, Innovation and Digitalization – Nucleu Programme

Au nanoparticles from liquid precursors (HAuCl₄) in a point-to-plate pulsed corona

Diameter (nm)

Diameter (nm)

Diameter (nm)

100

Au-100-CMC-t20 - Exp.1

700

800

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

12000

.

1000

Undersize (%)

Au-100-t15 - Exp.2 - Au-20-t5 - Exp.4

1.0 -

Exp.1: HAuCl₄ 100 mg/L + CMC-Na 1 mg/L

Exp.3: HAuCl₄ 20 mg/L

SUMMARY – Plasma synthesis of gold nanoparticles

- Stabilizer-free nanoparticle synthesis
- The size depends on the concentration of precursor

Work in progress ...

ACKNOWLEDGMENTS:

Florin Bilea, INFLPR – reactor design etc Iulia Lungu, INFLPR – DLS measurements Prof. Vasile Parvulescu et al., University of Bucharest – catalytic tests Prof. Pascal Granger et al., Université Lille – TEM measurements

Romanian Ministry for Research, Innovation and Digitalization – Nucleu Programme

THANK YOU!

Questions ?