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Section 1: The Fundamental Problem in Physics  

o Title: The Simplicial Discrete Informational Spacetime (SDIS) 

Framework: From "It from Bit" to Quantum Gravity 

o Subtitle: A Discrete, Informational Universe Resolving Continuum 

Incompatibilities 

o Author: Miltiadis Karazoupis 

o Affiliation: Independent Researcher 

The Unfinished Symphony: Gravity, Quantum Mechanics, and 

Information 

o Key Points: 

▪ GR: Describes gravity and spacetime on large scales. 

▪ QM: Describes particles and forces on small scales. 

▪ Information: Increasingly recognized as fundamental in physics 

(black holes, quantum computing). 

▪ The Challenge: Reconciling GR and QM, and understanding 

the role of information at the deepest level. 

The Challenge of Continuum Spacetime in QFT 

o Key Points: 

▪ Standard Assumption: Quantum Field Theory (QFT) is built 

upon a smooth, continuous spacetime manifold. 

▪ Rigorous Formulation: Axiomatic QFT (like Osterwalder-

Schrader axioms) provides a mathematical foundation. 

▪ Key Physical Requirements: A valid theory of strong 

interactions (QCD) must exhibit Mass Gap (Δ > 0) and 

Asymptotic Freedom (β < 0). 

▪ The Problem: Rigorous proof of these properties within the 

continuum remains elusive (Millennium Prize Problem). 

Fundamental Incompatibility in the Continuum 

o Key Points: 

▪ Rigorous Analysis: Examining axiomatic QFT (OS axioms) 

and the mass gap condition on correlation functions. 

▪ The Conflict: The analytic structure required by OS axioms + 

mass gap is mathematically irreconcilable with the high-



momentum behavior dictated by asymptotic freedom within the 

continuum framework (Karazoupis, 2025). 

▪ The Conclusion: This incompatibility strongly suggests the 

continuum assumption is insufficient for a complete description 

of reality. 

Section 2: The "It from Bit" Foundation: SDIS Principles  

SDIS: A Discrete, Informational Solution 

o Key Points: 

▪ A Proposed Solution: SDIS offers an alternative foundation for 

quantum gravity based on information. 

▪ Fundamental Discreteness: Spacetime is a dynamic quantum 

network, not a continuum. 

▪ Information as Primary: Built from information-bearing 

simplicial chronotopes (4-simplices). 

▪ Potential to Resolve Conflicts: Aims to naturally accommodate 

phenomena incompatible in the continuum by embracing 

information as fundamental. 

John Archibald Wheeler's "It from Bit" Vision 

o Key Points: 

▪ Radical Idea: Physical reality ("It") ultimately derives from 

information ("Bit"). 

▪ Information as Primary: Not just a descriptor, but the 

fundamental constituent. 

▪ Inspired SDIS: This philosophical cornerstone guides the SDIS 

framework. 

▪ Spacetime from Information: SDIS proposes spacetime itself 

emerges from informational degrees of freedom. 

The Building Blocks: The 4-Simplicial Chronotope (Geometry and 

Combinatorics) 

o Key Points: 

▪ Fundamental Units: Reality is composed of indivisible quanta 

called simplicial chronotopes. 

▪ Mathematical Form: Realized as regular 4-simplices 

(pentachora) in a 4D simplicial complex. 

▪ Simplest Polytope in 4D: Embodies minimality and high 

connectivity. 

▪ Geometric Components: Defined by its 5 vertices, 10 edges, 10 

triangular faces, and 5 tetrahedral cells. 

▪ Combinatorial Properties: These numbers are fixed and crucial 

for defining the network structure. 

The 4-Simplex: Simultaneously Geometric and Informational 



o Key Points: 

▪ Dual Nature: The same fundamental entity embodies both 

geometric properties and informational content. 

▪ Geometric Element: Defined by its shape, size, and 

connectivity, contributing to spacetime structure. 

▪ Informational Element: Associated with a quantum state (qubit) 

carrying intrinsic informational degrees of freedom. 

▪ Intertwined Aspects: Geometry and information are not 

separate but two sides of the same coin at this fundamental 

level. 

NCG & QIT: The Mathematical Foundation for the Dual Nature 

o Key Points: 

▪ Bridging Disciplines: SDIS leverages Non-commutative 

Geometry (NCG) and Quantum Information Theory (QIT). 

▪ Enabling the Dual Nature: These tools allow the simplex to be 

simultaneously geometric and informational. 

▪ NCG for Quantum Geometry: Provides the framework for the 

non-commutative algebra of length operators, leading to length 

quantization. 

▪ QIT for Quantum Information: Provides tools to describe the 

quantum state of simplices (qubits) and quantify information 

(entanglement entropy). 

Axiom 1: Quantum Discreteness - Rooted in Information 

o Key Points: 

▪ Fundamental Quantization: Spacetime and all physical 

quantities are discrete. 

▪ Information Quantization: This discreteness is fundamentally 

linked to the quantization of information at the level of the 

simplex-qubit. 

▪ Derived from Commutator Algebra: Length quantization arises 

from the non-commutative algebra of length operators (NCG), 

reflecting the informational structure described by QIT. 

Axiom 2: Holographic Finiteness - Information Bounded by Area 

o Key Points: 

▪ Area Law: Information content (entropy) of a region is 

bounded by its boundary area in Planck units. 

▪ Derived from Entanglement: Shown to arise from entanglement 

entropy across boundaries, highlighting entanglement (a QIT 

concept) as the carrier of holographic information. 

▪ Consistent with Holographic Principle: Information is 

effectively encoded on the boundary, not in the volume. 

Axiom 3: Geometric Stability - Maintaining Informational Structure 



o Key Points: 

▪ Ensuring Physical Realism: Framework maintains stable 

geometry, preventing singularities that would destroy 

information. 

▪ Geometric Stress: Deviations from regularity induce stress, 

which can disrupt informational order. 

▪ Pachner Moves: Stress triggers topological reconfigurations 

that reduce stress, preserving informational integrity. 

▪ Curvature Bound: Limits maximum curvature, avoiding 

singularities and unbounded information density. 

Derived Parameters: Spacetime Stiffness (Y) 

o Key Points: 

▪ Framework Derives Parameters: Key physical parameters are 

not assumed but derived from fundamental principles. 

▪ Spacetime Stiffness (Y): Characterizes the network's resistance 

to geometric deformation. 

▪ Grounded in Physics: Derived from Planckian energy density 

(E_P/l_P³) and linked to holographic entropy scaling. 

▪ Crucial for Dynamics: Appears in the Hamiltonian (penalizing 

stress) and stress-strain relations. 

Derived Parameters: Poisson Ratio (ν) 

o Key Points: 

▪ Poisson Ratio (ν): Characterizes the elastic properties of the 4-

simplex. 

▪ Grounded in Geometry: Rigorously derived from the isotropic 

symmetry and elastic response of the regular 4-simplex. 

▪ Crucial for Stability: Appears in the stress-strain relation, 

influencing geometric stability and curvature bounding. 

Section 3: The Dynamics Engine: Information Processing and Stability  

Quantum Dynamics: Information Processing and Dissipation 

o Key Points: 

▪ Governing Laws: Network evolves under a quantum 

Hamiltonian (coherent information processing) and Lindblad 

master equation (dissipative information loss/classicalization). 

▪ Includes Geometric Stress, Coupling, Decoherence: Captures 

key physical effects and their impact on information flow and 

coherence. 

▪ Ensures Physical Consistency: Maintains unitarity and trace 

preservation of information flow. 

Pachner Moves: Dynamic Topology Change for Information Stability 

o Key Points: 



▪ Local Reconfigurations: Discrete topological transformations 

of the network. 

▪ Stress-Triggered: Initiated when local stress/strain exceeds 

critical thresholds. 

▪ Stress Minimization: Drives the network towards stable, regular 

configurations, which are optimal for information flow. 

▪ Crucial for Geometric Stability: Prevents unbounded 

deformations and pathologies that would disrupt information 

structure. 

Dynamic Self-Optimization: Driving Towards Informational Stability 

o Key Points: 

▪ Core Process: The network actively optimizes its geometry and 

topology for stable information processing. 

▪ Energy Minimization: Favors low-stress, regular states, which 

are informationally robust. 

▪ Topology Adaptation: Pachner moves allow the network to heal 

and stabilize, preserving informational integrity. 

▪ Basis for Emergence: This process is fundamental to the 

emergence of stable macroscopic spacetime and its 

informational properties. 

Forward Causality: Inherently Enforced by Information Flow 

o Key Points: 

▪ Built-in Directionality: Simplex orientation establishes a 

directed causal structure for information flow. 

▪ Reinforced by Dynamics: Quantum evolution, emergent time, 

and stability mechanisms enforce forward information 

propagation. 

▪ Precludes Stable Retrocausality: The framework's logic 

strongly supports standard causality based on directed 

information flow. 

Emergent Time: A Step-by-Step Unfolding of Information States 

o Key Points: 

▪ Time as Emergent: Not a fundamental dimension, but arises 

from the sequence of network state changes (information 

states). 

▪ Discrete Moments: Temporal progression is a series of discrete 

steps, each representing a distinct informational configuration. 

▪ Inherent Directionality: Naturally supports forward causality of 

information processing. 

▪ Reinforced by Thermodynamics: Emergent arrow of time from 

entropy growth and decoherence (information loss). 

Section 4: Recovery of the Continuum Limit  



The Need for a Continuum Limit 

o Key Points: 

▪ Bridging Scales: SDIS describes physics at the Planck scale 

(microscopic). 

▪ Recovering Classical Physics: Must reproduce General 

Relativity and standard QFT at macroscopic scales. 

▪ The Challenge: Demonstrating how smooth, continuous 

spacetime emerges from the discrete informational network. 

▪ Validation: Successful recovery is crucial for the framework's 

physical viability. 

Bridging Discrete and Continuous: The Coarse-Graining Mechanism 

o Key Points: 

▪ Statistical Averaging: Macroscopic spacetime emerges by 

averaging over microscopic details of the discrete network. 

▪ Smoothing Out Discreteness: Analogous to how a fluid 

emerges from discrete atoms. 

▪ Integrating Out High-Energy: Effectively describes the low-

energy behavior. 

▪ Preserving Information: This process must preserve essential 

macroscopic information encoded in the network. 

Emergent Metric Tensor: Averaging the Informational Geometry 

o Key Points: 

▪ Classical Metric: The smooth metric tensor of GR emerges as a 

statistical average. 

▪ Expectation Value: Obtained by averaging the quantum metric 

operator over network states and fluctuations. 

▪ Weighted by Information: The averaging process is influenced 

by the informational content of simplices. 

▪ Linking Micro and Macro: Connects the discrete informational 

geometry to continuous spacetime curvature. 

Regge Calculus Continuum Limit: From Discrete Action to Einstein-

Hilbert 

o Key Points: 

▪ Discrete Action: The Regge action describes gravity on the 

simplicial network. 

▪ Continuum Convergence: As Planck length approaches zero 

and simplex density increases, the Regge action converges to 

the Einstein-Hilbert action of GR. 

▪ Mathematical Link: Provides a rigorous connection between 

the discrete framework and classical gravity. 

▪ Supported by Simulations: Numerical studies support this 

convergence. 



Vanishing Quantum Fluctuations at Macroscopic Scales 

o Key Points: 

▪ Quantum Noise: Metric fluctuations are inherent at the Planck 

scale (informational noise). 

▪ Suppression: These fluctuations become negligibly small at 

macroscopic scales. 

▪ Restoring Classicality: Leads to a smooth, classical spacetime 

geometry. 

▪ Diffeomorphism Invariance: Restored in the continuum limit, 

consistent with classical GR. 

Recovery of Lorentz Symmetry: Emergent Relativistic Information 

Structure 

o Key Points: 

▪ Consistent with Relativity: Lorentz invariance is recovered 

statistically in the continuum limit. 

▪ Statistical Averaging: Dynamical triangulation and simplex 

orientations average out preferred frames for information 

propagation. 

▪ Suppressed Violations: Deviations predicted only at 

experimentally inaccessible scales, preserving relativistic 

information structure at macro scales. 

Section 5: Key Emergent Phenomena from Information Processing  

Emergent Mass Gap: A Natural Outcome of Informational Structure 

o Key Points: 

▪ Resolution to Incompatibility: SDIS naturally generates a mass 

gap, resolving the conflict faced by continuum QFT. 

▪ Analytical Demonstration: Strictly positive energy gap (ΔE > 

0) shown in the strong coupling limit. 

▪ Consistent with Confinement: Aligns with the essential 

physical requirement of quark confinement, linked to the 

informational structure in the confining regime. 

Emergent Asymptotic Freedom: Correct UV Behavior from Information 

Dynamics 

o Key Points: 

▪ Reproducing QCD: SDIS inherently reproduces asymptotic 

freedom. 

▪ Negative Beta Function: Analytically derived negative beta 

function (β < 0) at weak coupling. 

▪ Consistent with Observation: Matches empirical data. 

▪ Unified Picture: Accommodates both mass gap and asymptotic 

freedom within one framework, arising from the same 

underlying information dynamics. 



Emergent Speed of Light (c): Causal Threshold for Information 

Propagation 

o Key Points: 

▪ Dynamical Origin: c emerges as the maximum speed for causal 

influence (information) propagation. 

▪ Planck Scale Steps: Causal propagation occurs via discrete 

steps (l_P/t_P). 

▪ Geometric Enforcement: Superluminal configurations are high-

stress and dynamically suppressed, preventing faster-than-

information propagation. 

Emergent Speed of Light (c): Value from Informational Optimization 

o Key Points: 

▪ Dynamically Selected Value: c's specific value is fixed by 

optimal self-organization requirements for efficient information 

processing. 

▪ Balancing Timescales: Requires a balance between quantum 

fluctuations and topological relaxation (Ω ~ 1), linked to 

informational timescales. 

▪ Links Fundamental Constants: Constrains c relative to ħ and G 

via informational principles. 

Emergent Lorentz Symmetry: Recovery of Relativistic Information 

Structure 

o Key Points: 

▪ Consistent with Relativity: Lorentz invariance is recovered 

statistically in the continuum limit. 

▪ Statistical Averaging: Dynamical triangulation and simplex 

orientations average out preferred frames for information 

propagation. 

▪ Suppressed Violations: Deviations predicted only at 

experimentally inaccessible scales, preserving relativistic 

information structure at macro scales. 

Emergent Dark Matter: Information-Induced Torsion 

o Key Points: 

▪ Novel Explanation: Dark matter as an emergent gravitational 

effect, not new particles. 

▪ Entropy Gradients: Spatial gradients in simplicial entanglement 

entropy (information content) source spacetime torsion. 

▪ Effective Source Term: Torsion generates a stress-energy 

tensor mimicking dark matter. 

▪ Density Profile: Derived profile resembles observed dark 

matter halos. 

Emergent Dark Energy & Black Holes: Information Storage and Release 



o Key Points: 

▪ Geometric Origin: Dark energy from the network's geometric 

ground state energy, linked to informational properties. 

▪ Cosmological Constant Problem: Extreme smallness explained 

by destructive interference of vacuum energy contributions 

(informational cancellation). 

▪ Black Hole Thermodynamics: Horizon qubits, entanglement 

entropy (information content), Hawking radiation from 

decoherence (information release). 

Emergent Standard Model Symmetries from Information Structure 

o Key Points: 

▪ Dynamical Emergence: SM symmetries (SU(3), SU(2), U(1)) 

arise from network connectivity and geometry, reflecting 

underlying informational patterns. 

▪ Structural Basis: Provides a geometric and structural origin for 

fundamental symmetries, rooted in information. 

Particle Interactions from Simplicial Information Couplings 

o Key Points: 

▪ Unified Description: SM interactions (QED, QCD, Yukawa) 

described within the simplicial framework. 

▪ Geometric Formulation: Provides a discrete geometric basis for 

fundamental forces, rooted in information exchange. 

▪ Bridging QFT and Geometry: Offers a pathway towards a 

unified description of spacetime, matter, and forces from an 

informational perspective. 

Section 6: Validation Through Simulation: Testing the Framework  

A Computational Framework for SDIS Dynamics 

o Key Points: 

▪ Python-Based Tool: Developed for simulating 4D simplicial 

complex dynamics. 

▪ Integrates Key Elements: Combines Pachner moves, Monte 

Carlo methods, and a Regge-calculus-inspired action. 

▪ Enables Exploration: Allows stochastic exploration of discrete 

spacetime configurations and their informational properties. 

Regge Calculus Implementation: Geometric Accuracy for Information 

Structure 

o Key Points: 

▪ Discrete Gravity Analogue: Regge Calculus approximates GR 

using simplicial geometry. 



▪ Accurate Calculations: Focus on precise calculation of dihedral 

and deficit angles using robust methods (Cayley-Menger 

minors). 

▪ Crucial Prerequisite: Accurate geometry is fundamental for 

understanding the underlying informational structure. 

Incorporating R² Curvature Corrections: Exploring Information 

Bounding 

o Key Points: 

▪ Beyond Einstein-Hilbert: Modified Regge action includes 

higher-order curvature terms (R²). 

▪ Theoretical Motivation: R² terms potentially bound curvature 

and resolve singularities, related to limiting information 

density. 

▪ Numerical Implementation: Framework includes a placeholder 

for rigorous calculation of the R² term. 

▪ Exploring Deeper Physics: Allows investigation of curvature 

bounding effects and their informational implications. 

Monte Carlo Simulations with Pachner Moves: Exploring Informational 

Configuration Space 

o Key Points: 

▪ Exploring Configuration Space: Monte Carlo methods sample 

different network geometries and their associated informational 

states. 

▪ Pachner Move Engine: Drives the stochastic evolution by 

proposing topology changes, altering informational pathways. 

▪ Action-Based Acceptance: Moves accepted/rejected based on 

minimizing the Regge action, favoring informationally stable 

configurations. 

Verification and Results: Validating the Informational Framework 

o Key Points: 

▪ Rigorous Testing: Implementation verified through stringent 

unit tests. 

▪ Geometric Accuracy Confirmed: High precision match for 

dihedral angles, validating the geometric basis for information 

encoding. 

▪ Curvature Dependence: Observed trend of decreasing deficit 

angle aligns with expectations, supporting the link between 

geometry and informational stress. 

▪ Topology Change Validity: High success rate for Pachner 

moves ensures reliable exploration of the informational 

configuration space. 

Section 7: Testable Predictions: Revealing the Informational Universe  



Quantum Spacetime Fluctuations: Revealing Informational Noise 

o Key Points: 

▪ Prediction: Detectable noise in spacetime measurements due to 

Planck-scale discreteness (informational granularity). 

▪ 1/f Noise Spectrum: Characteristic frequency distribution 

predicted. 

▪ Observational Target: Potentially detectable in advanced 

gravitational wave detectors. 

Angle-Stabilized Materials: Probing Informational Geometry 

o Key Points: 

▪ Prediction: Enhanced stiffness in nanostructures with specific 

dihedral angles (≈ 75.5°). 

▪ Mimics SDIS Geometry: These angles reflect the local 

informational structure of 4-simplices. 

▪ Experimental Test: Measuring stiffness in materials like boron 

nitride or graphene nanostructures. 

Photon Dispersion: Information Propagation at High Energies 

o Key Points: 

▪ Prediction: Energy-dependent speed of light at very high 

energies. 

▪ Subtle Deviation: Speed decreases slightly for higher energy 

photons, reflecting the discrete informational structure. 

▪ Observational Target: Potentially detectable as time delays in 

Gamma-Ray Bursts (GRBs). 

CMB Anomalies: Signatures of Early Informational Universe 

o Key Points: 

▪ Prediction: Specific anomalies in the Cosmic Microwave 

Background (CMB) radiation. 

▪ Hemispherical Power Asymmetry & Lensing Anomalies: 

Linked to inflation dynamics and Planck-scale spacetime 

fluctuations (informational patterns). 

▪ Observational Target: Detectable in high-resolution CMB 

maps. 

Gravitational Wave Memory: Informational Imprints of Black Hole 

Mergers 

o Key Points: 

▪ Prediction: Modifications to GW memory during black hole 

mergers. 

▪ Phase Noise & Memory Jump: Quantum effects (informational 

processes) imprint subtle signatures on GW waveforms. 



▪ Observational Target: Potentially detectable by advanced GW 

detectors. 

Section 8: Philosophical Implications: From "It from Bit" to a Computable 

Universe  

Reconsidering Spacetime and Reality: An Informational View 

o Key Points: 

▪ Profound Implications: Challenges classical assumptions. 

▪ Discrete Informational Foundation: Reality is fundamentally 

discrete and combinatorial information. 

▪ Emergent Continuum: Smooth spacetime is a macroscopic 

approximation arising from information processing. 

The Universe as a Computable System: Information Processing at its 

Core 

o Key Points: 

▪ Cosmic Finiteness: Finite information content. 

▪ Algorithmic Evolution: Universe's evolution is fundamentally 

computable, driven by information processing rules. 

▪ Quantum Information Processor: The universe as a vast 

quantum computer. 

The Role of the Observer: A Participatory Informational Reality 

o Key Points: 

▪ Active Participants: Observers contribute to shaping reality 

through interaction with the informational structure. 

▪ Interaction & Measurement: Help determine which potential 

informational configurations become real. 

▪ Subjective Probabilities: Aligns with QBism, reflecting 

observer's knowledge of the informational state. 

Philosophical Implications Summary 

o Key Points: 

▪ SDIS offers a novel philosophical perspective on spacetime, 

reality, and the role of information. 

▪ Challenges classical notions of continuum, objectivity, and 

determinism. 

▪ Embraces a fundamentally discrete, informational, and 

quantum mechanical view. 

The Promise of a Unified Theory 

o Key Points: 

▪ A Compelling Vision: SDIS offers a potential pathway towards 

a consistent and complete theory of quantum gravity. 



▪ Explaining Reality: Provides insights into the fundamental 

nature of spacetime, matter, and forces from an informational 

perspective. 

▪ Transformative Potential: Could reshape our understanding of 

the universe and the role of information within it. 

Section 9: Conclusion and Future Outlook  

Conclusion and Future Research: Exploring the Informational Universe 

o Key Points: 

▪ SDIS: A Unified, Predictive, and Consistent Framework 

Rooted in Information. 

▪ Addresses Key Problems & Provides Mechanisms. 

▪ Aligns with Observations & Generates Testable Predictions. 

▪ Validation Through Simulation: Regge Calculus and Monte 

Carlo provide crucial support. 

▪ The Power of Discreteness: Bypassing continuum limits 

enables a consistent description. 

▪ Future Research: Deepen math, advance simulations, pursue 

experiments, refine framework. 

▪ Invitation to Explore: Encouraging the scientific community to 

investigate this framework. 

 

Mathematical Formalism and Equations 

A. Fundamental Units and Quantization 

1. Planck Length (ℓ<sub>P</sub>): 

ℓ<sub>P</sub> = √(ℏG/c³) 

2. Planck Time (t<sub>P</sub>): 

t<sub>P</sub> = ℓ<sub>P</sub>/c 

t<sub>P</sub> = √(ℏG/c⁵) 

3. Planck Energy (E<sub>P</sub>): 

E<sub>P</sub> = ℏ/t<sub>P</sub> 

E<sub>P</sub> = √(ℏc⁵/G) 

4. Planck Temperature (T<sub>P</sub>): 

T<sub>P</sub> = E<sub>P</sub>/k 

T<sub>P</sub> = √(ℏc⁵/G) / k 

5. Quantization Rule: 

Q = nQ<sub>P</sub>, n ∈ ℕ ∪ {0} 

o O<sub>P</sub> represents the Planck-scale unit corresponding to the 

observable O (e.g., ℓ<sub>P</sub>, t<sub>P</sub>, E<sub>P</sub>, 

T<sub>P</sub>, A<sub>P</sub> = ℓ<sub>P</sub>², V<sub>P</sub> 

= ℓ<sub>P</sub>³, V<sub>4P</sub> = ℓ<sub>P</sub>⁴). 

6. Length Quantization from Commutator Algebra: 

[ℓ̂<sup>i</sup>, ℓ̂<sup>j</sup>] = 

iℓ<sub>P</sub>²ϵ<sup>ijk</sup>ℓ<̂sup>k</sup> 



Eigenvalues of the length operator (ℓ̂): 

ℓ = nℓ<sub>P</sub>, n ∈ ℕ ∪ {0} 

 

B. Simplicial Discrete Informational Spacetime (SDIS) Framework 

1. Simplicial Complex (S): A 4D simplicial complex defined as a set S = {s₁, s₂, 

…, s<sub>N</sub>} comprising N individual 4-simplices. 

2. Gluing Condition: Two simplices s<sub>i</sub> and s<sub>j</sub> are 

adjacent if and only if they share a common tetrahedral face (a 3-simplex). 

|s<sub>i</sub> ∩ s<sub>j</sub>| = 4 

3. Adjacency Matrix (A): A square matrix of size N x N encoding the 

connectivity of the simplicial network. 

A<sub>ij</sub> = { 1, if simplices s<sub>i</sub> and s<sub>j</sub> share a 

tetrahedron; 0, if simplices s<sub>i</sub> and s<sub>j</sub> do not share a 

tetrahedron } 

4. Hilbert Space (H): The quantum state space of the simplicial network, 

defined as the tensor product of individual Hilbert spaces (H<sub>i</sub>) 

associated with each simplex s<sub>i</sub>. 

H = ⊗<sup>N</sup><sub>i=1</sub> H<sub>i</sub> 

5. Qubit Space for Individual Simplices: The individual Hilbert space 

H<sub>i</sub> for a simplex s<sub>i</sub> is a qubit space spanned by two 

orthonormal basis states, |0⟩ and |1⟩. 
|ψ<sub>i</sub>⟩ = α<sub>i</sub>|0⟩ + β<sub>i</sub>|1⟩ 
Normalization condition: |α<sub>i</sub>|² + |β<sub>i</sub>|² = 1 

6. Bell-like Entangled State for Adjacent Simplices: A state |Ψ<sub>ij</sub>⟩ 
for adjacent simplices s<sub>i</sub> and s<sub>j</sub>. 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 

e<sup>iϕ</sup>|0<sub>i</sub>1<sub>j</sub>⟩) 
o ϕ is a geometric phase arising from parallel transport. 

o Geometric phase ϕ is expressed as a loop integral of the gauge 

connection A along a loop γ around the shared tetrahedral face: 

ϕ = ∮<sub>γ</sub>A = ∑<sub>⟨i,j⟩∈γ</sub> ϕ<sub>ij</sub> 

7. Vertex Stress (σ<sub>v</sub>): A measure of local geometric distortion 

around a vertex (v). 

σ<sub>v</sub> = ∑<sub>(e₁,e₂)∈edges at v</sub> (θ<sub>actual</sub>(e₁, 

e₂) - θ<sub>ideal</sub>)² 

o θ<sub>actual</sub>(e₁, e₂) is the actual dihedral angle. 

o θ<sub>ideal</sub> is the ideal dihedral angle for a regular 4-simplex: 

θ<sub>ideal</sub> = cos⁻¹(1/4) ≈ 75.5° 

8. Strain Tensor (ϵ<sub>ab</sub>): Quantifies geometric deformation in 

response to stress, related via a linearized Hooke's law adapted for 4D 

simplicial complexes. 

ϵ<sub>ab</sub> = (1+ν)/Y σ<sub>ab</sub> - ν/Y Tr(σ)δ<sub>ab</sub> 

o σ<sub>ab</sub> is the stress tensor. 

o Y is Young's modulus (spacetime stiffness modulus). 

o ν is Poisson's ratio (ν = 0.25 for a regular 4-simplex). 

o Tr(σ) = ∑<sup>4</sup><sub>a=1</sub> σ<sub>aa</sub> is the trace 

of the stress tensor. 



o δ<sub>ab</sub> is the Kronecker delta. 

9. Spacetime Stiffness Modulus (Y): Related to Planck energy density and 

holographic entropy scaling. 

Y = E<sub>P</sub>/ℓ<sub>P</sub>³ 

10. Critical Strain Threshold (ϵ<sub>crit</sub>): A dimensionless limit for 

strain beyond which reconfiguration occurs. 

ϵ<sub>crit</sub> = 1 (dimensionless) 

11. Critical Stress Threshold (σ<sub>crit</sub>): Maximum stress level the 

network can sustain elastically. 

σ<sub>crit</sub> = Y ⋅ ϵ<sub>crit</sub>² = 

(E<sub>P</sub>/ℓ<sub>P</sub>³) ⋅ (1)² = E<sub>P</sub>/ℓ<sub>P</sub>³ 

(Planck stress) 

12. Curvature Bound (R): Fundamental limit on spacetime curvature. 

R ≤ σ<sub>crit</sub>ℓ<sub>P</sub>² = 

(E<sub>P</sub>/ℓ<sub>P</sub>³)ℓ<sub>P</sub>² = 

E<sub>P</sub>/ℓ<sub>P</sub> = ℓ<sub>P</sub>⁻² 

13. Quantum Hamiltonian (Ĥ): Governs the dynamics of the simplicial network. 

Ĥ = Ĥ<sub>geo</sub> + Ĥ<sub>matter</sub> + Ĥ<sub>int</sub> 

o Geometric Hamiltonian (Ĥ<sub>geo</sub>): 

Ĥ<sub>geo</sub> = ∑<sub>v</sub> (Y/2)σ̂<sub>v</sub>² - 

J∑<sub>⟨i,j⟩</sub> σ̂ᵢˣσ̂ⱼˣ + h∑ᵢ σ̂ᵢᶻ 

▪ σ̂<sub>v</sub> is the stress operator at vertex v. 

▪ J is the quantum coupling energy (J = E<sub>P</sub>). 

▪ σ̂ᵢˣ, σ̂ⱼˣ are Pauli-X operators. 

▪ h is the decoherence parameter. 

▪ σ̂ᵢᶻ is the Pauli-Z operator. 

o Matter Hamiltonian (Ĥ<sub>matter</sub>): Sum of fermionic and 

bosonic kinetic terms. 

▪ Fermionic Kinetic Term (Ĥ<sub>fermion</sub>): 

Ĥ<sub>fermion</sub> = -t ∑<sub>⟨v,v'⟩</sub> 

(ψ<sub>v</sub><sup>†</sup>ψ<sub>v'</sub> + h.c.) 

▪ t is the hopping parameter (t ~ E<sub>P</sub>). 

▪ ψ<sub>v</sub><sup>†</sup>, ψ<sub>v'</sub> are 

fermionic creation/annihilation operators. 

▪ Bosonic Kinetic Term (Ĥ<sub>boson</sub>): 

Ĥ<sub>boson</sub> = (1/4g²) ∑<sub>faces</sub> 

Tr(U<sub>□a</sub> + U<sub>□a</sub><sup>†</sup>) 

▪ g is the gauge coupling constant (g ~ 

ℏc/ℓ<sub>P</sub>). 

▪ U<sub>□a</sub> is the face holonomy. 

o Interaction Hamiltonian (Ĥ<sub>int</sub>): Couples geometry to 

matter via stress-energy. 

Ĥ<sub>int</sub> = ∑<sub>v</sub> (σ<sub>v</sub> 

⋅T<sub>v</sub><sup>matter</sup>) 

▪ T<sub>v</sub><sup>matter</sup> is the matter stress-energy 

tensor at vertex v, approximated by: 

T<sub>v</sub><sup>matter</sup> = 

ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> + 

(1/2)Tr(F<sub>ij</sub>²) 



▪ ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> is 

fermionic energy density. 

▪ Tr(F<sub>ij</sub>²) is bosonic field energy density. 

14. Lindblad Master Equation: Governs the time evolution of the density matrix 

ρ, incorporating unitary evolution and decoherence. 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑ᵢ γ (LᵢρLᵢ† - ½{Lᵢ†Lᵢ, ρ}) 

o Lᵢ are Lindblad operators (Lᵢ = σ̂ᵢᶻ). 

o γ is the decoherence rate (γ = Γ<sub>decohere</sub>). 

15. Transition Rate (Γ<sub>flip</sub>): Rate for a simplex to flip between 

basis states |0⟩ and |1⟩. 
Γ<sub>flip</sub> = (J²/ℏ²) ⋅ γ / (γ² + (E<sub>P</sub>/ℏ)²) 

 

C. Yang-Mills Mass Gap and Asymptotic Freedom 

1. Källén-Lehmann Spectral Representation: For the two-point Schwinger 

function S̃₂(p²) of a gauge-invariant local operator O(x) = 

:Tr(F<sub>μν</sub>F<sup>μν</sup>)(x): with engineering dimension d=4 in 

continuum QFT. 

S̃₂(p²) = P(p²) + ∫<sub>0</sub><sup>∞</sup> dm² ρ(m²) / (p² + m²) 

o p² is the squared Euclidean momentum. 

o ρ(m²) is the non-negative spectral density. 

o P(p²) is a subtraction polynomial. 

2. Mass Gap Condition (Δ > 0): Implemented by constraining the support of the 

spectral density in continuum QFT. 

ρ(m²) = 0 for 0 < m² < Δ² 

S̃₂(p²) = P(p²) + ∫<sub>Δ²</sub><sup>∞</sup> dm² ρ<sub>c</sub>(m²) / (p² 

+ m²) (ρ<sub>c</sub> ≥ 0) 

3. Constraint on Subtraction Polynomial: For the operator O = :Tr(F²): in 

continuum QFT, the polynomial P(p²) is at most linear in p². 

P(p²) = a₀ + a₁ p² 

4. Asymptotic Behavior from Spectral Representation (p² → ∞): 

I(p²) = ∫<sub>Δ²</sub><sup>∞</sup> dm² ρ<sub>c</sub>(m²) / (p² + m²) = 

(1/p²) ∫<sub>Δ²</sub><sup>∞</sup> dm² ρ<sub>c</sub>(m²) - (1/p²)² 

∫<sub>Δ²</sub><sup>∞</sup> dm² m² ρ<sub>c</sub>(m²) + O(1/(p²)³) 

S̃₂(p²) ~ a₁ p² + a₀ + O(1/p²) 

5. Asymptotic Behavior from Asymptotic Freedom (p² → ∞): For O = 

:Tr(F²): in continuum QFT, the OPE and RG analysis predict: 

S̃₂(p²) ~ C₀ p² / [ln(p²/Λ²)]<sup>k</sup> 

o C₀ is a non-zero constant. 

o Λ is the intrinsic scale (e.g., Λ<sub>QCD</sub>). 

o k > 0 is a positive power. 

6. Contradiction: The asymptotic forms from spectral representation and 

asymptotic freedom are irreconcilable unless a₁ = 0, which leads to a 

contradiction with the required growth from asymptotic freedom. 

7. Hamiltonian Formulation in SDIS (Strong Coupling Limit): The SU(3) 

Yang-Mills theory is adapted to the simplicial structure. 

H<sub>QCD</sub> = H<sub>E</sub> + H<sub>B</sub> 

o H<sub>E</sub> = (g²/2ℏ) ∑<sub>e ∈ Edges(S)} Ê<sub>e</sub>² 



o H<sub>B</sub> = (2ℏ / g²) ∑<sub>□ ⊂ S} (N - 

Re[Tr(Û<sub>□</sub>)]) 

o Ê<sub>e</sub>² is proportional to the quadratic Casimir operator for 

SU(3). 

o Û<sub>□</sub> is the plaquette holonomy operator. 

o N=3 for SU(3). 

o g is the bare gauge coupling. 

8. Vacuum State and Energy (Strong Coupling Limit): The gauge-invariant 

ground state is |Ψ₀⟩ = |1⟩ (constant wave functional). 

E₀ = ⟨1| H<sub>QCD</sub> |1⟩ = (6ℏ N<sub>□</sub> / g²) 

o N<sub>□</sub> is the total number of elementary plaquettes. 

9. First Excited State and Energy (Strong Coupling Limit): The lowest-lying 

gauge-invariant excitation is approximately |Ψ₁⟩ ≈ N<sub>□</sub> 

Tr(Û<sub>□</sub>) |1⟩ (lightest glueball). 

E₁ ≈ k<sub>min</sub> C<sub>F</sub> (g²/2ℏ) 

o k<sub>min</sub> is the number of edges bounding the elementary 

plaquette (k<sub>min</sub> = 3 for a triangular face). 

o C<sub>F</sub> = 4/3 is the Casimir eigenvalue for the fundamental 

representation of SU(3). 

o E₁ ≈ 3 × (4/3) × (g²/2ℏ) = 2 g² / ℏ 

10. Energy Gap (ΔE) (Strong Coupling Limit): The difference between the first 

excited state energy and the vacuum energy. 

ΔE = E₁ - E₀ ≈ [2 g² / ℏ] - [(6ℏ N<sub>□</sub> / g²)] 

In the strict strong coupling limit (g → ∞), E₀ vanishes, and the gap is 

dominated by E₁: 

ΔE<sub>g→∞</sub> = 2 g² / ℏ > 0 

 

D. Emergent Phenomena (Speed of Light, Dark Matter) 

1. Discrete Gradient of Simplicial Entanglement Entropy: Defined between 

adjacent simplices σ and σ' separated along a discrete direction μ. 

∇<sub>μ</sub> S<sub>σ</sub> = (S<sub>σ'</sub> - S<sub>σ</sub>) / 

ℓ<sub>P</sub> 

o S<sub>σ</sub> is the entanglement entropy of simplex σ. 

2. Information-Induced Torsion Tensor (T<sup>λ</sup><sub>μν</sub>): 

Incorporated by modifying the affine connection coefficients. A proposed 

form is: 

T<sup>λ</sup><sub>μν</sub> = (Γ<sup>λ</sup><sub>νμ</sub> - 

Γ<sup>λ</sup><sub>μν</sub>)<sub>intrinsic</sub> + κ (∇<sub>μ</sub> 

S<sub>σ</sub> δ<sup>λ</sup><sub>ν</sub> - ∇<sub>ν</sub> 

S<sub>σ</sub> δ<sup>λ</sup><sub>μ</sub>) 

o κ = β ℓ<sub>P</sub>² / ħ is a coupling constant linking the 

informational term coefficient β to the geometric structure. 

3. Maximum Local Speed: The maximum possible speed for a single causal 

step in SDIS. 

v<sub>max</sub> = Δx / Δt<sub>min</sub> ≈ ℓ<sub>P</sub> / 

t<sub>P</sub> = c 



4. Dimensionless Optimization Parameter (Ω): Characterizes the ratio of 

topological relaxation timescale (t<sub>relax</sub>) to quantum fluctuation 

timescale (tQ or tP). 

Ω = t<sub>relax</sub> / tQ or Ω = t<sub>relax</sub> / tP 

Successful optimization requires Ω ~ 1. 

5. Condition for Optimal Dynamics: The observed numerical value of c is 

determined by the condition that Ω ~ 1 for stable macroscopic spacetime 

emergence. This imposes a constraint on the value of c relative to ħ and G. 

6. Effective Propagator for Massless Excitations: On the coarse-grained 

network, shows convergence to the relativistic form in the low-energy limit. 

G(k,ω)⁻¹ ∝ k² - (ω²/c²) + O(ℓ<sub>P</sub>²) 

o k is momentum, ω is frequency. 

7. Effective Stress-Energy Tensor (T<sup>DM</sup><sub>μν</sub>): 

Generated by the information-induced torsion field, mimicking dark matter. 

Assuming a quadratic form: 

T<sup>DM</sup><sub>μν</sub> = (κ / (8π G)) * (T<sub>μ α β</sub> 

T<sub>ν</sub><sup>α β</sup> - (1/4) g<sub>μν</sub> T<sub>α β γ</sub> 

T<sup>α β γ</sup>) 

8. Field Equation for Dark Matter Density (ρ<sub>DM</sub>) or Potential 

(Φ<sub>DM</sub>): Derived by relating T<sup>DM</sup><sub>μν</sub> 

to curvature or potential. In the Newtonian limit or under spherical symmetry: 

∇² Φ<sub>DM</sub> = 4π G ρ<sub>DM</sub> ∝ κ * (terms involving 

derivatives of T<sup>λ</sup><sub>μν</sub>) 

9. Ansatz for Spatial Distribution of Simplicial Entanglement Entropy: 

Assumed radial dependence S(r) within a gravitationally bound system. 

S(r) = S₀ ln(1 + r / r<sub>c</sub>) 

o S₀ is a normalization constant. 

o r<sub>c</sub> is a characteristic core radius (r<sub>c</sub> = 

ℓ<sub>P</sub> / sqrt(β)). 

10. Derived Dark Matter Density Profile (ρ<sub>DM</sub>(r)): Obtained by 

solving the field equation using the entropy profile ansatz. 

ρ<sub>DM</sub>(r) = (κ S₀ / (8π G r<sub>c</sub>²)) * (1 / (1 + r / 

r<sub>c</sub>)²) 

11. Circular Velocity Squared (v<sub>circ</sub>²(r)): Predicted by the 

combined gravitational potential of visible matter (M<sub>vis</sub>(r)) and 

the emergent dark matter component (M<sub>DM</sub>(r)). 

v<sub>circ</sub>²(r) = G (M<sub>vis</sub>(r) + M<sub>DM</sub>(r)) / r 

The contribution from the SDIS dark matter component leads to: 

v<sub>circ</sub>²(r) ≈ G M<sub>vis</sub>(r) / r + (κ S₀ / 2) * (r / (r + 

r<sub>c</sub>)) 

12. Lensing Equation: The derived density profile contributes to the total mass 

density in the lensing equation for the potential ψ. 

∇² ψ = 4π G (ρ<sub>vis</sub> + ρ<sub>DM</sub>) 

13. Energy-Momentum Conservation: The effective stress-energy tensor is 

posited to be covariantly conserved. 

∇<sub>μ</sub> T<sup>DM μν</sup> = 0 

 

E. Emergence of Semi-Dirac Quasiparticles 



1. Microscopic Hamiltonian (H): Postulated to reflect anisotropic couplings 

between simplices. 

H = H<sub>x</sub> + H<sub>y</sub> 

o H<sub>x</sub> = -J<sub>x</sub> ∑<sub>n</sub> 

σ<sub>n</sub><sup>x</sup> σ<sub>n+x</sub><sup>x</sup> 

(interaction along x-direction) 

o H<sub>y</sub> = ∑<sub>n</sub> f(σ<sub>n</sub>, 

σ<sub>n+ŷ</sub>) (interaction along y-direction, low-energy limit 

yields linear dispersion) 

2. Lattice Fourier Transform: Transition to momentum space description. 

σ<sub>k</sub><sup>α</sup> = (1/√N) ∑<sub>n</sub> e<sup>-ik⋅na</sup> 

σ<sub>n</sub><sup>α</sup> 

o a is the effective lattice spacing. 

3. Effective Low-Energy Hamiltonian (H<sub>eff</sub>(k)): Derived 

through coarse-graining (Fourier transform and low-energy expansion). 

H<sub>eff</sub>(k) ≈ (J<sub>x</sub> a² / 2) k<sub>x</sub>² 

σ<sub>k</sub><sup>x</sup> + (B' a) k<sub>y</sub> 

σ<sub>k</sub><sup>y</sup> 

o k<sub>x</sub>, k<sub>y</sub> are momentum components. 

o σ<sub>k</sub><sup>x</sup>, σ<sub>k</sub><sup>y</sup> are Pauli 

matrices in momentum space. 

o A = J<sub>x</sub> a² / 2 and B = B' a are effective parameters. 

4. Semi-Dirac Dispersion Relation: The structure of H<sub>eff</sub>(k) leads 

to a hybrid dispersion relation, quadratic in k<sub>x</sub> and linear in 

k<sub>y</sub>. 

 

 

F. Renormalization Group and Asymptotic Freedom in SDIS 

1. SDIS Action for Pure SU(3) Gauge Theory (Euclidean): Formulated on the 

simplicial network S using face holonomies U<sub>□</sub>. 

S<sub>SDIS</sub>[U] = β<sub>SDIS</sub> ∑<sub>□ ∈ Faces(S)</sub> (1 

- (1/N) Re[Tr(U<sub>□</sub>)]) 

o N=3 for SU(3). 

o β<sub>SDIS</sub> = 2Nħ / g² = 6ħ / g² relates the action parameter to 

the bare coupling g defined at the fundamental scale (Planck scale). 

2. Quantum Theory Definition (Path Integral): Defined via the path integral 

over edge holonomies U<sub>e</sub>. 

Z = ∫ [dU] exp(-S<sub>SDIS</sub>[U] / ħ) 

3. Background Field Expansion: Edge holonomy U<sub>e</sub> is split into a 

classical background U<sub>e</sub><sup>B</sup> and quantum fluctuations 

parameterized by Lie algebra elements δA<sub>e</sub>. 

U<sub>e</sub> = exp(i g a<sub>e</sub>) U<sub>e</sub><sup>B</sup> 

o a<sub>e</sub> = a<sub>e</sub><sup>a</sup> T<sup>a</sup> is the 

dimensionless Lie-algebra valued quantum fluctuation field on edge e. 

o g is the bare coupling. 



4. Expanded Action (Schematic): Expanding S<sub>SDIS</sub>[U] / ħ in 

powers of the quantum field a<sub>e</sub> around the background 

U<sub>e</sub><sup>B</sup>. 

S<sub>SDIS</sub>[U<sup>B</sup>, a] / ħ = 

(S<sub>SDIS</sub>[U<sup>B</sup>] / ħ) + S<sup>(1)</sup>/ħ + 

S<sup>(2)</sup>/ħ + S<sup>(3)</sup>/ħ + S<sup>(4)</sup>/ħ + ... 

o S<sup>(1)</sup>/ħ: Linear in a<sub>e</sub>. 

o S<sup>(2)</sup>/ħ: Quadratic in a<sub>e</sub>. Defines the bare 

gluon kinetic operator K<sup>(2)</sup>. 

o S<sup>(3)</sup>/ħ: Cubic in a<sub>e</sub>. Defines the 3-gluon 

vertex Γ<sup>(3)</sup> ∝ g f<sup>abc</sup>. 

o S<sup>(4)</sup>/ħ: Quartic in a<sub>e</sub>. Defines the 4-gluon 

vertex Γ<sup>(4)</sup> ∝ g² f f. 

5. Gauge Fixing Action (S<sub>GF</sub>): Added to handle gauge freedom, 

typically quadratic in the gauge condition (G a). 

S<sub>GF</sub> / ħ = (1 / (2ξħ)) Σ Tr[ (G a) ]² 

o ξ is the gauge parameter. 

o G is the gauge condition operator. 

6. Faddeev-Popov Ghost Action (S<sub>ghost</sub>): Added along with 

ghost fields (c, c̄). 

S<sub>ghost</sub> / ħ = - Tr[log M] 

o M is the Faddeev-Popov operator. 

o Expanding yields a quadratic ghost kinetic operator 

K<sub>ghost</sub> and ghost-gluon interactions 

Γ<sup>(ghost)</sup> ∝ g f<sup>abc</sup>. 

7. Gluon Propagator (D<sub>ab</sub>(e, e’)): Formally the inverse of the full 

quadratic operator K<sub>gluon</sub> = K<sup>(2)</sup> + 

K<sub>GF</sub>. 

D = (K<sub>gluon</sub>)⁻¹ 

8. Ghost Propagator (G<sub>ab</sub>(v, v’)): Formally the inverse of the 

quadratic ghost operator K<sub>ghost</sub> from S<sub>ghost</sub>/ħ. 

G = (K<sub>ghost</sub>)⁻¹ 

9. 1-Loop Quantum Corrections (ΔΓ): Arise from evaluating diagrams with 

internal loops of quantum gluons and ghosts. Key contributions to the gluon 

self-energy Π<sub>ab</sub>(e, e’) (which renormalizes g) are schematically: 

o Gluon Loop (2 vertices): Π<sup>(gg)</sup> ~ Σ<sub>int</sub> 

Γ<sup>(3)</sup> * D * Γ<sup>(3)</sup> * D 

o Gluon Loop (Tadpole): Π<sup>(tadpole)</sup> ~ Σ<sub>int</sub> 

Γ<sup>(4)</sup> * D 

o Ghost Loop: Π<sup>(ghost)</sup> ~ Σ<sub>int</sub> 

Γ<sup>(ghost)</sup> * G * Γ<sup>(ghost)</sup> * D 

o Σ<sub>int</sub> denotes sums over internal network elements. 

10. Standard 1-Loop Beta Function Coefficient (b₀): For an 

SU(N<sub>c</sub>) Yang-Mills theory with N<sub>f</sub> fundamental 

fermions. 

b₀ = (11/3)N<sub>c</sub> - (2/3)N<sub>f</sub> 

For pure SU(3) (N<sub>c</sub>=3, N<sub>f</sub>=0), the expected result 

is: 

b₀ = (11/3) * 3 = 11 



11. 1-Loop Beta Function (β(g<sub>eff</sub>)): For the effective coupling 

g<sub>eff</sub>, adopting the standard physics convention. 

β(g<sub>eff</sub>) = μ * dg<sub>eff</sub>/dμ ≈ - (b₀ / (16π²ħ)) * 

g<sub>eff</sub>³ 

o μ is the energy scale. 

o Sign: β(g<sub>eff</sub>) < 0 for non-zero weak coupling 

g<sub>eff</sub>, since b₀ = 11 > 0. 

12. Running Coupling: Solving the RG equation yields the familiar running 

coupling. 

g<sub>eff</sub>(μ)² ≈ (8π²ħ / b₀) / ln(μ / 

Λ<sub>QCD</sub><sup>(SDIS)</sup>) 

13. Dynamically Generated Scale (Λ<sub>QCD</sub><sup>(SDIS)</sup>): 

The non-perturbative scale where the effective coupling becomes strong, 

derived by integrating the RG equation. 

Λ<sub>QCD</sub><sup>(SDIS)</sup> ≈ E<sub>P</sub> * exp(-8π²ħ / (b₀ 

g²)) 

o E<sub>P</sub> is the Planck energy (fundamental scale/cutoff). 

o g is the bare coupling at E<sub>P</sub>. 

 

 

G. Discrete Quantum Gravity with R² Corrections 

1. Regge Action (S<sub>Regge</sub>): Discrete analog of the Einstein-Hilbert 

action, expressed as a sum over hinges (triangles t). 

S<sub>Regge</sub> = ∑<sub>hinges t</sub> A<sub>t</sub> ⋅ 
δ<sub>t</sub> 

o A<sub>t</sub> is the area of the hinge triangle t. 

o δ<sub>t</sub> is the deficit angle at the hinge triangle t. 

2. R² Curvature Correction Term (S<sub>R²</sub>): Included in the 

modified Regge action. 

S<sub>R²</sub> = κ ∑<sub>hinges t</sub> A<sub>t</sub> ⋅ δ<sub>t</sub>² 

o κ is a coupling constant. 

3. Modified Regge Action: 

S<sub>Modified</sub> = S<sub>Regge</sub> + S<sub>R²</sub> (+ 

cosmological constant term) 

4. Dihedral Angle (θ<sub>t</sub>): Calculated using the Cayley-Menger 

minor formula for a triangle t shared by two 4-simplices. 

cos(θ<sub>t</sub>) = ± det(CM₄) * det(CM₂) / sqrt[ det(CM₃⁽¹⁾) * det(CM₃⁽²⁾)  

o CM₄, CM₂, CM₃⁽¹⁾, CM₃⁽²⁾ are specific Cayley-Menger minors 

constructed from squared edge lengths. 

5. Deficit Angle (δ<sub>t</sub>): Calculated by summing dihedral angles 

around a hinge triangle t and subtracting from 2π. 

δ<sub>t</sub> = 2π - ∑<sub>4-simplices sharing t</sub> θ<sub>t</sub> 

6. Numerical Derivative of Action with respect to Edge Length 

(l<sub>e</sub>): Approximated using the central difference method. 

∂S / ∂l<sub>e</sub> ≈ [S(l<sub>e</sub> + Δl) - S(l<sub>e</sub> - Δl)] / (2 

Δl) 



o Δl is a small perturbation step size. 

 

Appendix: Mathematical Formalism and Equations (Theorems and Proofs) 

H. Theorems and Proofs from "Complete Theory of Simplicial Discrete 

Informational Spacetime" 

1. Theorem: Holographic Entropy Bound - Proof via State Counting and 

Area Law 

o Theorem Statement: The entropy (S) of any spatial region (R) with 

boundary area (A) in the simplicial spacetime framework is bounded 

by the Holographic Entropy Bound: S ≤ A / 4ℓ<sub>P</sub>². 

o Proof Outline: 

▪ State Counting: Bounding Boundary Qubits: The number of 

boundary qubits (N<sub>active</sub>) encoding the 

information of a spatial region is fundamentally bounded by the 

holographic principle: N<sub>active</sub> ≤ A / 

4ℓ<sub>P</sub>². 

▪ Boltzmann Entropy: Relating Entropy to Number of States: 

The Boltzmann entropy formula is S = 

k<sub>B</sub>ln(N<sub>states</sub>). Setting 

k<sub>B</sub> = 1 in Planck units, S = 

ln(N<sub>states</sub>). 

▪ Maximum Entropy for Boundary Qubits: The maximum 

number of states for N<sub>active</sub> qubits is 

2<sup>N<sub>active</sub></sup>. The maximum entropy is 

S ≤ ln(2<sup>N<sub>active</sub></sup>) = 

N<sub>active</sub>ln(2). 

▪ Holographic Match: Deriving Area Law from Qubit 

Bound: Substituting the bound on N<sub>active</sub> into 

the maximum entropy formula: S ≤ (A / 

4ℓ<sub>P</sub>²)ln(2). Approximating ln(2) ≈ 1, we arrive at 

the Holographic Entropy Bound: S ≤ A / 4ℓ<sub>P</sub>². 

2. Theorem: Singularity Avoidance - Proof via Area Quantization and 

Curvature Bound 

o Theorem Statement: The Complete Theory of Simplicial Discrete 

Informational Spacetime inherently avoids spacetime singularities, 

regions of infinite curvature and zero volume, due to the fundamental 

principles of area quantization and curvature bound, ensuring 

geometric stability and preventing pathological spacetime 

configurations. 

o Proof Outline (via LQG Analogy and Geometric Stability Axiom): 

▪ Area Quantization: Minimal Area Gap Preventing Zero 

Area: Analogous to LQG, the discrete simplicial structure 

implies area quantization. The area operator has a discrete 

spectrum with a minimal non-zero eigenvalue, a minimal area 

gap (ΔA) below which area cannot be further reduced: ΔA ~ 



ℓ<sub>P</sub>². This prevents spacetime from collapsing to 

zero area. 

▪ Curvature Bound: Limiting Curvature Exceeding Planck 

Scale: The axiom of Geometric Stability imposes a curvature 

bound (R) on simplicial spacetime: R ≤ ℓ<sub>P</sub>⁻². This 

establishes a fundamental limit on the maximum curvature, 

preventing curvature from becoming infinite. 

▪ Conclusion: By incorporating area quantization (preventing 

zero volume) and the curvature bound (preventing infinite 

curvature), the framework inherently avoids spacetime 

singularities. 

3. Theorem: Unitarity - Proof via Hermitian Hamiltonian and Lindblad 

Equation 

o Theorem Statement: The quantum dynamics of the simplicial 

network, governed by the Hamiltonian operator Ĥ and described by the 

Lindblad master equation, are unitary, preserving quantum information 

and ensuring consistent and physically meaningful time evolution 

within the framework. 

o Proof Outline: 

▪ Hermitian Hamiltonian: Ensuring Unitary Evolution 

Component: The Hamiltonian operator Ĥ is mathematically 

constructed to be Hermitian (Ĥ = Ĥ†). Hermiticity ensures that 

the unitary evolution component of the simplicial dynamics, 

described by the commutator term -i/ℏ [Ĥ, ρ] in the Lindblad 

master equation, preserves quantum information. 

▪ Unitary Time Evolution Operator: Preserving Quantum 

Information: The time evolution operator U(t) = e<sup>-

iĤt/ℏ</sup> for a Hermitian Hamiltonian is unitary (UU† = 

U†U = I). Unitarity ensures that time evolution is a reversible 

and norm-preserving transformation, guaranteeing the 

conservation of probability and the preservation of quantum 

information throughout unitary evolution. 

▪ Lindblad Master Equation: Preserving Trace and Positivity 

of Density Matrix: The Lindblad master equation (dρ/dt = -i/ℏ 

[Ĥ, ρ] + ∑ᵢ γ (LᵢρLᵢ† - ½{Lᵢ†Lᵢ, ρ})), by construction, preserves 

the trace (Tr(ρ) = 1) and positivity (eigenvalues of ρ remain 

non-negative) of the density matrix ρ. This ensures that ρ 

remains a valid quantum state throughout time evolution, even 

with dissipative effects. 

▪ Conclusion: The Hermiticity of Ĥ and the trace/positivity 

preservation by the Lindblad equation establish the unitarity of 

the quantum dynamics, ensuring quantum information 

conservation and consistent time evolution. 

 

I. Theorems and Proofs from "Existence of a Mass Gap in SU(3) Yang-Mills 

Theory within the Simplicial Discrete Informational Spacetime Framework: A 

Strong Coupling Analysis" 



1. Theorem: Existence of a Positive Energy Gap in the Strong Coupling 

Limit 

o Theorem Statement: Within the Hamiltonian formulation of SU(3) 

Yang-Mills theory adapted to the Simplicial Discrete Informational 

Spacetime (SDIS) framework, a strictly positive energy gap (ΔΕ > 0) 

exists between the vacuum and the first excited state in the strong 

coupling limit (g → ∞). 

o Proof Outline: 

▪ Hamiltonian in Strong Coupling Limit: In the strong 

coupling limit (g → ∞), the Hamiltonian H<sub>QCD</sub> is 

dominated by the electric term H<sub>E</sub>: 

H<sub>QCD</sub> ≈ H<sub>E</sub> = (g²/2ℏ) ∑<sub>e ∈ 

Edges(S)</sub> Ê<sub>e</sub>². 

▪ Vacuum State and Energy: The operator Ê<sub>e</sub>² is 

proportional to the quadratic Casimir operator for SU(3), which 

has non-negative eigenvalues. Thus, H<sub>E</sub> is a sum 

of non-negative operators, and its lowest possible eigenvalue is 

zero. The minimum energy E₀ = 0 is achieved for a gauge-

invariant state |Ψ₀⟩ where Ê<sub>e</sub>² |Ψ₀⟩ = 0 for all 

edges. This corresponds to the constant wave functional |1⟩, 
which is gauge invariant. The energy of this state is E₀ = ⟨1| 

H<sub>QCD</sub> |1⟩. In the strict g → ∞ limit, the 

H<sub>B</sub> term (which is proportional to 1/g²) vanishes, 

so E₀ = 0. 

▪ First Excited State and Energy: The first excited state |Ψ₁⟩ 
must be orthogonal to the vacuum state |1⟩ and be a gauge-

invariant eigenstate of H<sub>E</sub> with the lowest non-

zero eigenvalue. Any state orthogonal to |1⟩ must have 

dependence on the link variables, implying non-zero electric 

flux energy. The simplest gauge-invariant excitation involving 

minimal electric flux is a closed loop around a minimal 

plaquette □, represented by |□⟩ = Tr(Û<sub>□</sub>) |1⟩. This 

state is gauge invariant and is an eigenstate of H<sub>E</sub> 

to leading order. The energy of this state is E₁ ≈ 

k<sub>min</sub> C<sub>F</sub> (g²/2ℏ), where 

k<sub>min</sub> is the number of edges bounding the 

plaquette (k<sub>min</sub> = 3 for a triangular face) and 

C<sub>F</sub> = 4/3 is the Casimir eigenvalue. Thus, E₁ ≈ 2 

g² / ℏ. 

▪ Energy Gap Calculation and Positivity: The energy gap is 

ΔE = E₁ - E₀. In the strict strong coupling limit (g → ∞), E₀ → 

0 and E₁ → 2 g² / ℏ. Therefore, ΔE<sub>g→∞</sub> = 2 g² / ℏ. 

Since g ≠ 0 and ℏ > 0, 2 g² / ℏ is strictly positive. More 

formally, E₁ is the lowest eigenvalue among states orthogonal 

to the vacuum. Since H<sub>E</sub> is positive semi-definite 

and has eigenvalue 0 only for the vacuum state |1⟩ in the gauge-

invariant sector, any state orthogonal to |1⟩ must have a strictly 

positive expectation value for H<sub>E</sub>. Thus, the 

lowest such eigenvalue E₁ must be strictly positive. Since E₀ = 

0 in this limit, ΔE = E₁ > 0. 



▪ Conclusion: The energy gap ΔE is strictly positive in the 

strong coupling limit. 

J. Theorems and Proofs from "Dynamic Self-Optimization of Simplicial Discrete 

Informational Spacetime and the Emergent Origin of the Speed of Light" 

1. Theorem 1: Emergence of c as a Strict Causal Threshold 

o Theorem Statement: In a dynamically stable SDIS network 

optimizing towards minimal geometric stress, the maximum speed for 

the propagation of local causal influence is bounded by c = 

ℓ<sub>P</sub> / t<sub>P</sub>. 

o Proof Sketch Outline: 

▪ Local Causal Steps: Causal influence propagates across the 

network via discrete steps between adjacent, causally connected 

4-simplices. The minimal spatial extent of such a step is 

characterized by the Planck length, Δx ≈ ℓ<sub>P</sub>. 

▪ Minimum Time Interval: Due to the quantization of time 

inherent in the framework (or as a consequence of the 

uncertainty principle applied at the Planck scale), the minimum 

time interval required for any distinct physical process, 

including the propagation of influence to an adjacent simplex, 

is the Planck time, Δt<sub>min</sub> = t<sub>P</sub>. 

▪ Maximum Local Speed: The maximum possible speed for a 

single causal step is therefore v<sub>max</sub> = Δx / 

Δt<sub>min</sub> ≈ ℓ<sub>P</sub> / t<sub>P</sub>. By 

definition of the Planck units used in SDIS, ℓ<sub>P</sub> / 

t<sub>P</sub> = c. Thus, v<sub>max</sub> = c. 

▪ Instability of Superluminal Configurations: A hypothetical 

local configuration permitting propagation faster than c (Δt < 

t<sub>P</sub> for Δx ≈ ℓ<sub>P</sub>) would require either 

a violation of the minimum time step t<sub>P</sub> or 

extreme geometric distortion leading to extremely high local 

geometric stress σ<sub>v</sub> ∝ (θᵢ - θ₀)². 

▪ Dynamic Suppression: According to the SDIS postulates, 

configurations with high geometric stress (σ<sub>v</sub> >> 

σ<sub>crit</sub>) are dynamically unstable. The self-

optimization process, driven by stress minimization via Pachner 

moves, rapidly eliminates such high-stress configurations. 

Pachner moves reconfigure the local topology and geometry, 

restoring configurations where causal propagation adheres to Δt 

≥ t<sub>P</sub> for steps of size ≈ ℓ<sub>P</sub>. 

▪ Conclusion: The network's dynamic self-optimization actively 

prunes configurations allowing superluminal propagation 

because they represent states of high geometric stress and 

causal instability. The stable, low-stress state towards which the 

network evolves enforces c = ℓ<sub>P</sub> / t<sub>P</sub> 

as the maximum local speed for causal influence. 

2. Theorem 2: Determination of c's Numerical Value via Optimization 

Efficiency 



o Theorem Statement: The observed numerical value of c is determined 

by the condition that the dimensionless parameter Ω, characterizing the 

ratio of topological relaxation timescale to quantum fluctuation 

timescale, must be of order unity (Ω ~ 1) for stable macroscopic 

spacetime emergence. 

o Proof Sketch Outline: 

▪ Relevant Timescales: Identify key operational timescales: 

▪ Quantum Fluctuation/Interaction Time (tQ): Governed 

by the energy scale of interactions between simplices 

(coupling J). If J ~ E<sub>P</sub>, then tQ ~ 

ħ/E<sub>P</sub> = tP = √(ħG/c⁵). 

▪ Topological Relaxation Time (t<sub>relax</sub>): 

Characteristic time for the network to reduce stress via 

Pachner moves. Depends on the rate Γ of Pachner 

moves, influenced by the energy barrier (related to Y, 

σ<sub>crit</sub>) and potentially quantum tunneling. 

Y ~ c⁷/(ħG²). 

▪ Dimensionless Ratio (Ω): Define a dimensionless parameter 

comparing the relaxation capability to the fluctuation scale, 

e.g., Ω = t<sub>relax</sub> / tQ or Ω = t<sub>relax</sub> / 

tP. 

▪ Refined Hypothesis (Focus on Stability Window): The 

stability and efficiency of the self-optimization process depend 

critically on the relative strengths and timescales set by Y, J, ħ, 

G, c. Let f(ħ, G, c) be a function representing the condition for 

successful optimization. Successful optimization requires this 

function to yield a dimensionless number Ω<sub>opt</sub> ≈ 

1. Due to the strong dependence of Y (~c⁷) and tP (~c⁻⁵/²) on c, 

the function f is expected to be highly sensitive to c. 

▪ Conclusion: Only when c has its specific measured value 

relative to ħ and G does Ω<sub>opt</sub> fall within the 

narrow window required for a stable, large-scale universe to 

emerge. The specific value of c is fixed because it is the unique 

value (relative to ħ and G) that places the universe within the 

narrow operational "sweet spot" required for the dynamic self-

optimization mechanism of the SDIS network to function 

effectively, allowing the formation and persistence of a stable, 

large-scale, low-curvature macroscopic spacetime. 

 

 

Appendix K: Emergence of the Standard Model from the SDIS Framework 

This appendix provides a rigorous mathematical foundation for the emergence of the 

Standard Model (SM) of particle physics from the core principles of the Simplicial 

Discrete Informational Spacetime (SDIS) framework. We employ the formalism of 

Non-Commutative Geometry (NCG), which provides the necessary tools to describe a 



spacetime that is a product of a continuous manifold and a discrete, finite internal space. 

This "almost-commutative" geometry is the natural language for the SDIS postulate 

that the universe is fundamentally a discrete informational network that appears as a 

smooth continuum at macroscopic scales. 

K.1 The Algebraic Foundation: The Almost-Commutative Spacetime 

In the SDIS framework, spacetime is fundamentally a quantum network of "simplicial 

chronotopes." At the emergent, macroscopic level, this structure is described by an 

almost-commutative algebra A. This algebra is the tensor product of the algebra of 

functions on the emergent spacetime manifold M and a finite-dimensional non-

commutative algebra A_F that encodes the internal structure and informational content 

of the chronotopes. 

1. Total Algebra: 

A = C^∞(M) ⊗ A_F 

 

Here, C^∞(M) is the commutative algebra of smooth, complex-valued 

functions on the 4D Lorentzian manifold M, representing the emergent 

spacetime continuum. 

2. The Finite Internal Algebra A_F:  

The algebra A_F is the mathematical realization of the collective informational 

and connectivity properties of the simplicial chronotopes. To reproduce the 

Standard Model, this algebra is chosen to be: 

 

A_F = C ⊕ H ⊕ M_3(C) 

 

where: 

o C are the complex numbers, whose automorphism group is U(1). This 

corresponds to the hypercharge symmetry U(1)_Y. 

o H are the quaternions, whose group of unit-norm elements is SU(2). 

This corresponds to the weak isospin symmetry SU(2)_L. 

o M_3(C) are the 3x3 complex matrices, whose group of unitary 

matrices with determinant 1 is SU(3). This corresponds to the color 

symmetry SU(3)_C. 

The full gauge group of the Standard Model, G_SM = SU(3) × SU(2) × U(1), arises 

naturally from the group of unitary automorphisms of the algebra A. 

K.2 The Fermionic Sector: The Hilbert Space 

The matter content of the theory (quarks and leptons) resides in a Hilbert space H upon 

which the algebra A acts. 



1. Total Hilbert Space: 

 

H = L^2(M, S) ⊗ H_F 

where L^2(M, S) is the space of square-integrable spinors on the manifold M. 

2. Finite Hilbert Space H_F:  

The internal Hilbert space H_F contains a full generation of fundamental 

fermions. For a single generation, H_F is a 32-dimensional complex vector 

space, encompassing quarks and leptons, left and right chiralities, and their anti-

particles. For three generations, dim(H_F) = 96. The basis vectors of H_F are 

the states |ν_L⟩, |e_L⟩, |ν_R⟩, |e_R⟩, |u_L⟩, |d_L⟩, |u_R⟩, |d_R⟩, and their anti-

particles, with quarks carrying an additional 3-fold color index. 

The action of the algebra A_F on H_F is defined to correctly reproduce the 

hypercharges and isospin representations of all known particles. 

K.3 The Geometric Engine: The Spectral Triple and Dirac Operator 

The complete geometric and particle content of the theory is encoded in a spectral 

triple (A, H, D). The Dirac operator D is a self-adjoint operator on H that encodes the 

metric structure of M and the particle interactions, including the Higgs mechanism. 

1. The Dirac Operator D: 

D = D_M ⊗ 1 + γ_5 ⊗ D_F 

o D_M = -iγ^μ∇_μ^S is the canonical Dirac operator on the curved 

spacetime M, where ∇_μ^S is the spin connection. 

o γ_5 is the chirality operator. 

o D_F is a finite-dimensional operator on H_F that is, in essence, the 

fermionic mass matrix, containing the Yukawa couplings and the Higgs 

field. 

2. The Internal Dirac Operator D_F: This operator connects the different 

sectors of the finite Hilbert space. It is a large matrix whose entries are 

determined by the fundamental "information exchange" rules between 

chronotopes, which manifest as the Yukawa couplings of the SM. It has the 

following block structure, where φ is the Higgs doublet field: 

D_F = 

[  0      Y_R(φ)    M_R      0    ] 

    [ Y_R(φ)†    0        0       0    ] 

    [  M_R†     0        0      Y_L(φ) ] 

    [  0        0      Y_L(φ)†    0    ] 

o Y_R(φ) and Y_L(φ) are matrices containing the Yukawa couplings 

(Y_u, Y_d, Y_e) for quarks and leptons, contracted with the Higgs 

field φ. For example, Y_L(φ) = [Y_u φ, Y_d φ]. 



o M_R is a large Majorana mass matrix for the right-handed neutrinos, 

allowing for a see-saw mechanism. 

K.4 The Dynamics Engine: The Spectral Action Principle 

The dynamics of both gravity and the Standard Model are unified and derived from a 

single, simple principle: the Spectral Action Principle. This principle states that the 

fundamental action S is a trace over a function of the Dirac operator. 

S = Tr(f(D/Λ)) 

• f is a positive, even cutoff function (a heat kernel or a smoothed step function) 

that acts as a probe of the geometry. 

• Λ is a cutoff energy scale, identified with a fundamental scale of the SDIS 

framework, presumably near the Planck scale. 

• Tr denotes the trace over the Hilbert space H. 

The physical action is obtained by the asymptotic expansion of the Spectral Action for 

large Λ: 

S ~ Σ_n a_n Λ^n where a_n = Tr(Res(D^{-n})) 

This expansion remarkably yields the complete Lagrangian of the Standard Model 

minimally coupled to gravity. The first few terms are: 

• a_4 term (∝ Λ^4): A cosmological constant term. 

• a_2 term (∝ Λ^2): The Einstein-Hilbert action for gravity, plus a term that 

forces the Higgs field to be dimensionless. 

• a_0 term (∝ Λ^0): The Yang-Mills action for the SU(3) × SU(2) × 

U(1) gauge fields and the Higgs-Kibble action for the Higgs field, with the 

characteristic "Mexican hat" potential emerging automatically. 

The coefficients of these terms, and thus all coupling constants and masses, are 

calculable from the initial data of the spectral triple. For instance, the gauge 

couplings g_1, g_2, g_3 at the unification scale Λ are related by: 

g_1^2 : g_2^2 : g_3^2 = Tr(Y^2) : Tr(I_2^2) : Tr(λ_c^2) 

where the trace is over the appropriate representations. 

K.5 Derivation of Bosonic Fields 

The bosonic fields (gauge and Higgs bosons) are not put in by hand; they emerge from 

fluctuations of the metric, which in NCG are represented by fluctuations of the Dirac 

operator. 



1. Gauge Fields: A gauge potential A is an element of the algebra A that gives 

rise to a fluctuated Dirac operator: 

D_A = D + A + J A J^{-1} 

where J is the real structure on the spectral triple (the charge conjugation 

operator). Applying the Spectral Action Principle to D_A yields the kinetic 

terms for the gauge fields F_μν F^μν and their coupling to the fermionic 

currents. 

2. Higgs Field: The Higgs field arises as the part of the gauge potential A that 

corresponds to the internal, discrete directions within the finite algebra A_F. 

The Higgs is, in this sense, the "vector boson" of the discrete internal space. The 

Higgs potential V(φ) = -μ^2 |φ|^2 + λ |φ|^4 is generated automatically by 

the a_0 term of the spectral action expansion, with the 

parameters μ^2 and λ determined by the Yukawa couplings of 

the D_F operator. 

 

Appendix: Mathematical Formalism and Equations (Concepts, Formalisms, 

Methods) 

N.1 Geometric Formalisms (Simplicial, Regge Calculus, etc.) 

1. Simplicial Complex (S): 

o Formalization: A 4D simplicial complex defined as a set S = {s₁, s₂, 

…, s<sub>N</sub>} comprising N individual 4-simplices. 

o Gluing Condition: Simplices s<sub>i</sub> and s<sub>j</sub> are 

considered "glued" or adjacent if and only if they share a common 

tetrahedral face. 

|s<sub>i</sub> ∩ s<sub>j</sub>| = 4 

2. Adjacency Matrix (A): 

o Formalization: A square matrix of size N x N, where N is the number 

of simplices in the set S, encoding the connectivity of the simplicial 

network based on the Gluing Condition. 

A<sub>ij</sub> = { 1, if simplices s<sub>i</sub> and s<sub>j</sub> 

share a tetrahedron; 0, if simplices s<sub>i</sub> and s<sub>j</sub> 

do not share a tetrahedron } 

3. Simplices (by Dimension): 

o 0-simplex: A point (vertex). 

o 1-simplex: A line segment (edge) connecting two vertices. 

o 2-simplex: A triangle (face) defined by three vertices and three edges. 

(Hinge in 4D Regge Calculus). 

o 3-simplex: A tetrahedron (volume) defined by four vertices, six edges, 

and four triangles. 

o 4-simplex (Chronotope): The fundamental building block of 

spacetime in SDIS. 

4. Regge Calculus: 

o Formalization: A discrete formulation of General Relativity that 

provides a geometric approximation of spacetime using piecewise 

linear simplicial manifolds. Describes spacetime geometry in terms of 



discrete building blocks – simplices – and their edge lengths. 

Curvature is concentrated on lower-dimensional subspaces known as 

hinges (triangles in 4D spacetime). 

5. Regge Action (S<sub>Regge</sub>): 

o Formalization: A discrete analog of the Einstein-Hilbert action, 

expressed as a sum over hinges involving deficit angles. 

S<sub>Regge</sub> = ∑<sub>hinges t</sub> A<sub>t</sub> ⋅ 
δ<sub>t</sub> 

▪ A<sub>t</sub> is the area of the hinge triangle t. 

▪ δ<sub>t</sub> is the deficit angle at the hinge triangle t. 

6. R² Curvature Correction Term (S<sub>R²</sub>): 

o Formalization: A term included in the modified Regge action, 

representing higher-order curvature corrections. 

S<sub>R²</sub> = κ ∑<sub>hinges t</sub> A<sub>t</sub> ⋅ 
δ<sub>t</sub>² 

▪ κ is a coupling constant. 

7. Modified Regge Action: 

o Formalization: The Regge action including R² curvature corrections 

and potentially a cosmological constant term. 

S<sub>Modified</sub> = S<sub>Regge</sub> + S<sub>R²</sub> (+ 

cosmological constant term) 

8. Dihedral Angle (θ<sub>t</sub>): 

o Formalization: The angle between two 4-simplices sharing a triangle 

(hinge t). Calculated using the Cayley-Menger minor formula. 

cos(θ<sub>t</sub>) = ± det(CM₄) * det(CM₂) / sqrt[ det(CM₃⁽¹⁾) * 

det(CM₃⁽²⁾) ] 

▪ CM₄, CM₂, CM₃⁽¹⁾, and CM₃⁽²⁾ represent specific Cayley-

Menger minors constructed from the squared edge lengths of 

relevant simplices and vertex sets. 

9. Ideal Dihedral Angle (Regular 4-simplex): 

o Formalization: The dihedral angle in a perfectly regular and stress-

free 4-simplex. 

θ<sub>ideal</sub> = cos⁻¹(1/4) ≈ 75.5° 

10. Deficit Angle (δ<sub>t</sub>): 

o Formalization: Calculated by summing the dihedral angles around a 

hinge triangle t and subtracting the sum from 2π (the flat space angle 

sum). 

δ<sub>t</sub> = 2π - (sum of dihedral angles around t) 

11. Vertex Stress (σ<sub>v</sub>): 

o Formalization: A measure of local geometric distortion or deviation 

from an idealized, stress-free configuration around a vertex (v). 

σ<sub>v</sub> = ∑<sub>(e₁,e₂)∈edges at v</sub> 

(θ<sub>actual</sub>(e₁, e₂) - θ<sub>ideal</sub>)² 

▪ θ<sub>actual</sub>(e₁, e₂) represents the actual dihedral angle 

between the two tetrahedral faces sharing the edge (e₁, e₂) at 

vertex v. 

12. Strain Tensor (ϵ<sub>ab</sub>): 

o Formalization: A symmetric rank-2 tensor quantifying the geometric 

deformation at a vertex v in response to stress, derived from the stress 

tensor via a linearized Hooke's law adapted for a 4-dimensional 



simplicial complex. 

ϵ<sub>ab</sub> = (1+ν)/Y σ<sub>ab</sub> - ν/Y 

Tr(σ)δ<sub>ab</sub> 

▪ σ<sub>ab</sub> represents the stress tensor at vertex v. 

▪ Y represents Young's modulus (spacetime stiffness modulus). 

▪ ν represents Poisson's ratio. 

▪ Tr(σ) = ∑<sup>4</sup><sub>a=1</sub> σ<sub>aa</sub> 

represents the trace of the stress tensor. 

▪ δ<sub>ab</sub> represents the Kronecker delta. 

13. Spacetime Stiffness Modulus (Y): 

o Formalization: A scalar quantity representing the spacetime stiffness 

modulus of the simplicial network, characterizing its resistance to 

deformation. 

Y = E<sub>P</sub>/ℓ<sub>P</sub>³ 

14. Poisson's Ratio (ν): 

o Formalization: A dimensionless scalar quantity representing the 

Poisson ratio for a 4-simplex, characterizing its elastic properties. 

Theoretically determined for a regular 4-simplex. 

ν = 0.25 

15. Critical Strain Threshold (ϵ<sub>crit</sub>): 

o Formalization: A dimensionless quantity representing a universal 

limit for strain beyond which the simplicial network becomes unstable 

and reconfigures its topology. 

ϵ<sub>crit</sub> = 1 (dimensionless) 

16. Critical Stress Threshold (σ<sub>crit</sub>): 

o Formalization: A scalar quantity representing the maximum stress 

level that the simplicial network can sustain elastically. 

σ<sub>crit</sub> = Y ⋅ ϵ<sub>crit</sub>² = 

(E<sub>P</sub>/ℓ<sub>P</sub>³) ⋅ (1)² = 

E<sub>P</sub>/ℓ<sub>P</sub>³ (Planck stress) 

17. Curvature Bound (R): 

o Formalization: A fundamental limit on the maximum curvature that 

can be sustained in simplicial spacetime. 

R ≤ σ<sub>crit</sub>ℓ<sub>P</sub>² = 

(E<sub>P</sub>/ℓ<sub>P</sub>³)ℓ<sub>P</sub>² = 

E<sub>P</sub>/ℓ<sub>P</sub> = ℓ<sub>P</sub>⁻² 

18. Area Quantization: 

o Formalization: A consequence of the discrete simplicial structure 

implying that the area operator in simplicial spacetime has a discrete 

spectrum with a minimal non-zero eigenvalue, a minimal area gap 

(ΔA). 

ΔA ~ ℓ<sub>P</sub>² 

19. 4-Volume of a regular 4-simplex with edge length a: 

o Formalization: The volume of a regular 4-simplex. 

V₄ = (a⁴ / 288) √5 

20. Planck-Scale 4-Volume (v₄): 

o Formalization: The volume of a regular 4-simplex with edge length a 

= ℓ<sub>P</sub>. 

v₄ = (ℓ<sub>P</sub>⁴ / 288) √5 

21. Hyperbolic Embedding (Möbius Transformation): 



o Formalization: A method for computing hyperbolic embedding using 

Möbius transformations. For a point z and transformation parameters a, 

b: 

Result = (a * z + b) / (conjugate(b) * z + conjugate(a)) 

▪ z, a, b are complex numbers (or CDF types in the code). 

22. Inverse Participation Ratio (IPR): 

o Formalization: A measure to quantify eigenvector localization for a 

normalized eigenvector ψ = (ψ₁, ψ₂, ..., ψ<sub>N</sub>). 

IPR(ψ) = ∑<sub>i=1</sub><sup>N</sup> |ψ<sub>i</sub>|⁴ 

 

N.2 Quantum Information and Quantum Mechanics Formalisms 

1. Hilbert Space (H): 

o Formalization: The quantum state space of the simplicial network, 

representing the quantum degrees of freedom of simplicial spacetime. 

Constructed as the tensor product of individual Hilbert spaces 

associated with each simplex. 

H = ⊗<sup>N</sup><sub>i=1</sub> H<sub>i</sub> 

▪ H<sub>i</sub> represents the individual Hilbert space 

associated with the i-th simplex s<sub>i</sub>. 

2. Qubit Space: 

o Formalization: The simplest quantum system, spanned by two 

orthonormal basis states, denoted as |0⟩ and |1⟩. The individual Hilbert 

space for each simplex is defined as a qubit space. 

o General Quantum State for a Simplex: 

|ψ<sub>i</sub>⟩ = α<sub>i</sub>|0⟩ + β<sub>i</sub>|1⟩ 
▪ α<sub>i</sub> and β<sub>i</sub> are complex coefficients. 

▪ Normalization condition: |α<sub>i</sub>|² + |β<sub>i</sub>|² 

= 1 

3. Tensor Product: 

o Formalization: A mathematical operation that combines Hilbert 

spaces to create a larger Hilbert space representing a composite 

system. Used to construct the total Hilbert space for the simplicial 

complex. 

4. Entanglement: 

o Formalization: A key feature of quantum mechanics and a crucial 

resource for quantum information processing, playing a fundamental 

role in the simplicial network, particularly in defining quantum 

correlations between adjacent simplices. 

o Bell-like Entangled State: A specific type of entangled state for two 

qubits. Used to represent quantum correlations between adjacent 

simplices. 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 

e<sup>iϕ</sup>|0<sub>i</sub>1<sub>j</sub>⟩) 
▪ ϕ is a geometric phase. 

5. Entanglement Entropy: 

o Formalization: A measure quantifying the quantum correlations 

between subsystems. For a bipartition of a system into regions A and 



B, the entanglement entropy S<sub>A</sub> is calculated using the 

reduced density matrix ρ<sub>A</sub> for region A. 

S<sub>A</sub> = -Tr(ρ<sub>A</sub>ln(ρ<sub>A</sub>)) 

▪ Tr denotes the trace operator. 

▪ ρ<sub>A</sub> is the reduced density matrix. 

6. Operator: 

o Formalization: A mathematical object that acts on a state space in 

quantum mechanics, representing physical observables or 

transformations. Discussed in the context of length operators, stress 

operators, metric operators, Hamiltonian operators, Lindblad operators, 

creation/annihilation operators, Pauli operators, etc. 

7. Hermitian Operator: 

o Formalization: A quantum operator representing a physical 

observable, ensuring that its eigenvalues are real and that it generates 

unitary time evolution. The Hamiltonian operator Ĥ is constructed to 

be Hermitian (Ĥ = Ĥ†). 

8. Unitary Operator: 

o Formalization: An operator that preserves the norm of quantum states, 

ensuring conservation of probability and quantum information. The 

time evolution operator U(t) = e<sup>-iĤt/ℏ</sup> for a Hermitian 

Hamiltonian is unitary (UU† = U†U = I). 

9. Density Matrix (ρ): 

o Formalization: A mathematical object describing the quantum state of 

a system, particularly relevant for describing mixed states and 

dissipative dynamics. 

10. Lindblad Master Equation: 

o Formalization: A fundamental equation in Open Quantum Systems 

Theory that describes the time evolution of the density matrix ρ, 

incorporating both unitary evolution due to the Hamiltonian and 

dissipative effects due to decoherence. 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑ᵢ γ (LᵢρLᵢ† - ½{Lᵢ†Lᵢ, ρ}) 

▪ Ĥ is the Hamiltonian operator. 

▪ [Ĥ, ρ] = Ĥρ - ρĤ is the commutator. 

▪ Lᵢ are Lindblad operators. 

▪ Lᵢ† is the Hermitian conjugate of Lᵢ. 

▪ {Lᵢ†Lᵢ, ρ} = Lᵢ†Lᵢρ + ρLᵢ†Lᵢ is the anticommutator. 

▪ γ is the decoherence rate. 

11. Lindblad Operator (Lᵢ): 

o Formalization: Operators in the Lindblad master equation that 

describe the specific quantum operations that induce decoherence in 

the system. In the context of SDIS decoherence, they are identified 

with local decoherence operators (Lᵢ = σ̂ᵢᶻ). 

12. Decoherence Rate (γ or Γ<sub>decohere</sub>): 

o Formalization: A positive parameter quantifying the strength of 

decoherence and the rate at which quantum coherence is lost due to 

system-environment interactions. 

13. Pauli Operators (σ̂ˣ, σ̂ʸ, σ̂ᶻ): 

o Formalization: A set of 2x2 matrices used in quantum mechanics to 

represent spin-1/2 particles (qubits). Used in the SDIS Hamiltonian to 

describe quantum coupling (σ̂ˣ) and decoherence (σ̂ᶻ). 



14. Creation and Annihilation Operators (ψ<sup>†</sup>, ψ): 

o Formalization: Operators used in quantum field theory to create or 

destroy particles in a given state. Used in the fermionic kinetic term of 

the SDIS Hamiltonian. 

15. Trace (Tr): 

o Formalization: A mathematical operation that sums over the diagonal 

elements of a matrix or operator. Used in the Lindblad equation, in 

defining bosonic kinetic energy, and in calculating entanglement 

entropy. 

16. Commutator ([A, B]): 

o Formalization: A mathematical operation defined as [A, B] = AB - 

BA. Used in the Lindblad master equation to describe unitary 

evolution and in defining the algebra of operators (e.g., length 

operators). 

17. Anticommutator ({A, B}): 

o Formalization: A mathematical operation defined as {A, B} = AB + 

BA. Used in the Lindblad master equation and in defining the algebra 

of fermionic operators (anticommutation relations). 

18. Fermionic Anticommutation Relations: 

o Formalization: Relations that vertex spinors ψ<sub>vα</sub> must 

satisfy to describe fermionic particles, reflecting the Pauli exclusion 

principle. 

{ψ<sub>vα</sub>, ψ<sub>v'β</sub>} = 

δ<sub>vv'</sub>δ<sub>αβ</sub> 

▪ δ<sub>vv'</sub> is the Kronecker delta in vertex indices. 

▪ δ<sub>αβ</sub> is the Kronecker delta in spinor indices. 

19. Quantum States as Vectors in Representation Spaces: 

o Formalization: Quantum states are interpreted as vectors in 

representation spaces of emergent symmetry groups. Each irreducible 

representation corresponds to a distinct type of quantum state or 

particle. 

20. Quantum Operators as Symmetry Transformations: 

o Formalization: Quantum operators are interpreted as symmetry 

transformations acting on the state space of the simplicial chronotope 

network. 

 

N.3 Renormalization Group Formalisms and Techniques 

1. Renormalization Group (RG): 

o Formalization: A framework to study how physical properties and 

effective descriptions of a system change with scale (energy scale or 

length scale) by integrating out degrees of freedom at shorter scales. 

Applied in SDIS to analyze the scale dependence of emergent 

couplings and the classical limit. 

2. Renormalization Group Flow (RG Flow): 

o Formalization: The evolution of effective descriptions (e.g., effective 

couplings, effective actions) as the scale of observation is changed. 



This process can be iterative coarse-graining. The flow is analyzed in 

the space of effective descriptions. 

3. Beta Function (β(g)): 

o Formalization: A function that describes the dependence of a 

coupling parameter (g) on the energy scale (μ). It quantifies the rate of 

change of the coupling with scale. 

β(g) = μ * dg/dμ 

o 1-Loop Beta Function (Pure SU(N<sub>c</sub>) Yang-Mills): The 

standard result for the leading coefficient b₀ of the 1-loop beta 

function. 

β(g) ≈ - (b₀ / (16π²)) * g³ 

b₀ = (11/3)N<sub>c</sub> - (2/3)N<sub>f</sub> 

For pure SU(3) (N<sub>c</sub>=3, N<sub>f</sub>=0): b₀ = 11. 

β(g<sub>eff</sub>) ≈ - (11 / (16π²ħ)) * g<sub>eff</sub>³ (in SDIS 

context, with ħ included) 

4. Running Coupling (g(μ)): 

o Formalization: The dependence of a coupling parameter on the 

energy scale μ, obtained by integrating the beta function. 

∫ dg / β(g) = ∫ dμ / μ 

For the 1-loop beta function β(g) ≈ - (b₀ / (16π²)) g³, the running 

coupling is: 

g(μ)² = 1 / [ 1/g₀² + (b₀ / (8π²)) ln(μ/μ₀) ] 

or equivalently: 

g(μ)² = (8π² / b₀) / ln(μ / Λ) 

▪ g₀ is the coupling at a reference scale μ₀. 

▪ Λ is the dynamically generated scale. 

5. Dynamically Generated Scale (Λ): 

o Formalization: A characteristic energy scale that emerges from a 

dimensionless theory through quantum effects (RG flow), where the 

running coupling becomes strong. In the context of SDIS and emergent 

SU(3) gauge theory, related to the Planck scale E<sub>P</sub> and 

bare coupling g. 

Λ<sub>QCD</sub><sup>(SDIS)</sup> ≈ E<sub>P</sub> * exp(-

8π²ħ / (b₀ g²)) 

6. Background Field Method: 

o Formalization: A technique in quantum field theory used in RG 

analysis where fields are split into a classical background field and 

quantum fluctuations. Adapted in SDIS by splitting edge holonomies 

into a classical background U<sub>e</sub><sup>B</sup> and 

quantum fluctuations δA<sub>e</sub>. 

U<sub>e</sub> = exp(i g a<sub>e</sub>) 

U<sub>e</sub><sup>B</sup> 

▪ a<sub>e</sub> = a<sub>e</sub><sup>a</sup> 

T<sup>a</sup> is the dimensionless Lie-algebra valued 

quantum fluctuation field. 

7. Gauge Fixing: 

o Formalization: Procedures introduced in quantum field theories with 

gauge symmetry to eliminate redundant degrees of freedom in the path 

integral or Hamiltonian formulation. Used in RG analysis to define 



propagators for gauge fields. Includes introducing gauge fixing terms 

(S<sub>GF</sub>) and Faddeev-Popov ghosts (c, c̄). 

8. Faddeev-Popov Ghosts: 

o Formalization: Auxiliary fields introduced in gauge fixing procedures 

to maintain unitarity. Included in the loop calculations for the beta 

function. 

9. Vacuum Polarization: 

o Formalization: Quantum corrections to the propagation of particles 

(like gluons) due to virtual particle-antiparticle pairs in the vacuum. 

These corrections contribute to the beta function and the running of the 

coupling. Calculated via loop diagrams involving propagators and 

vertices. 

 

N.4 Statistical and Numerical Methods 

1. Statistical Analysis: 

o Formalization: The use of statistical methods to analyze data, 

particularly for comparing distributions and performing hypothesis 

tests. Applied to the spectral statistics of the prime number 

Hamiltonian. 

2. Numerical Methods: 

o Formalization: Computational techniques for solving mathematical 

problems that may be difficult or impossible to solve analytically. 

Used extensively for simulations, calculations, and data analysis in the 

provided studies. 

3. Computational Simulation: 

o Formalization: Using numerical methods implemented on computers 

to model physical systems and their dynamics. Applied to simulate 4D 

simplicial complex dynamics (Monte Carlo), neutron star structure 

(solving TOV and MHD equations), and explore theoretical 

predictions. 

4. Analytical Methods: 

o Formalization: Using mathematical analysis (algebra, calculus, 

functional analysis, etc.) to derive exact or approximate results. 

Contrasted with numerical methods and used for derivations of Planck 

units, equations, asymptotic behavior, beta functions, energy gaps, etc. 

5. Statistical Ensemble: 

o Formalization: A collection of possible states of a system, used in 

statistical mechanics and for defining macroscopic observables in 

SDIS. Equipped with a probability measure. 

6. Statistical Average (Ensemble Average): 

o Formalization: The average of a quantity over a statistical ensemble, 

weighted by the probability measure. Used to define macroscopic 

observables from microscopic configurations in SDIS. 

⟨O⟩<sub>Ensemble</sub> = ∫ D[Configuration] ρ(Configuration) 

O[Configuration] 

▪ O[Configuration] is the value of the observable for a given 

configuration. 



▪ ρ(Configuration) is the probability measure for that 

configuration. 

▪ ∫ D[Configuration] represents integration over the space of 

configurations. 

7. Coarse-Graining: 

o Formalization: A procedure to obtain a simplified description of a 

system at larger scales by averaging over or integrating out 

microscopic details. A key mechanism for emergence in SDIS, leading 

from discrete to continuous descriptions. 

8. Numerical Derivative (Finite Difference Method): 

o Formalization: Approximation of the derivative of a function using 

values of the function at nearby points. The central difference method 

is mentioned for approximating derivatives of the Regge action with 

respect to edge lengths. 

∂f/∂x ≈ [f(x + Δx) - f(x - Δx)] / (2 Δx) 

9. Interpolation: 

o Formalization: Estimating values between known data points. Used in 

the neutron star solver for obtaining values from tabulated Equations of 

State and for magnetic field profiles. 

10. Vectorization: 

o Formalization: A computational technique using operations that apply 

to entire arrays or vectors at once, improving efficiency. Mentioned in 

the prime number Hamiltonian code for matrix construction. 

11. Caching: 

o Formalization: A computational technique to store the results of 

expensive computations (e.g., geometric calculations) to avoid 

recomputing them later, improving performance. Mentioned in the 

simplicial complex code. 

12. Parameter Optimization: 

o Formalization: Finding the best values for parameters in a model, 

often using numerical methods. Discussed in the prime number 

Hamiltonian study (grid search) and for fitting dark matter density 

profiles to observational data. 

13. Grid Search: 

o Formalization: A simple method for parameter optimization that 

explores a predefined range of parameter values. Used in the prime 

number Hamiltonian study. 

14. Hypothesis Testing: 

o Formalization: Statistical methods for evaluating a claim (hypothesis) 

about a population based on sample data. Used for comparing spectral 

statistics (e.g., testing if observed spacings are drawn from the GUE 

distribution). 

15. Goodness-of-Fit Test: 

o Formalization: A statistical test to assess how well observed data fit a 

theoretical distribution (e.g., Kolmogorov-Smirnov test). Used in the 

prime number Hamiltonian study to compare the NNSD to the GUE 

Wigner surmise. 

16. Spectral Statistics Analysis: 



o Formalization: Analyzing the statistical properties of the eigenvalues 

of a system (e.g., NNSD, IPR). Applied to the prime number 

Hamiltonian to look for signatures of quantum chaos. 

17. Unfolding: 

o Formalization: A procedure in spectral statistics to transform a non-

uniform eigenvalue spectrum into a sequence with uniform density, 

revealing universal fluctuations. A polynomial fitting procedure is 

mentioned. 

18. Nearest-Neighbor Spacing (NNS): 

o Formalization: The difference between consecutive unfolded 

eigenvalues. The distribution of NNS is a key indicator of spectral 

statistics. 

19. Level Repulsion: 

o Formalization: The tendency for eigenvalues to avoid being close to 

each other, a signature of quantum chaos, characterized by the NNS 

distribution approaching zero as the spacing approaches zero. 

20. Inverse Participation Ratio (IPR): 

o Formalization: A measure of eigenvector localization. For a 

normalized eigenvector ψ = (ψ₁, ψ₂, ..., ψ<sub>N</sub>), the IPR is 

calculated as: 

IPR(ψ) = ∑<sub>i=1</sub><sup>N</sup> |ψ<sub>i</sub>|⁴ 

▪ IPR ranges from 1/N (fully delocalized) to 1 (fully localized). 

21. Numerical Diagonalization: 

o Formalization: Computing the eigenvalues and eigenvectors of a 

matrix using numerical algorithms. Applied to the prime number 

Hamiltonian. 

22. Sparse Matrix Techniques: 

o Formalization: Computational methods for handling matrices with a 

large number of zero elements efficiently. Used for diagonalizing the 

prime number Hamiltonian. 

 

N.5 Gravity and Spacetime Dynamics Formalisms 

1. General Relativity (GR): 

o Formalization: A classical theory describing gravity as the curvature 

of spacetime, sourced by energy and momentum. Formulated in terms 

of smooth spacetime metrics and differential equations. The Einstein 

field equations are its core equations. 

o Einstein Field Equations: Relate spacetime curvature (Einstein tensor 

G<sub>μν</sub>) to the distribution of energy and momentum (stress-

energy tensor T<sub>μν</sub>). 

G<sub>μν</sub> = 8πG T<sub>μν</sub> 

▪ G is Newton's gravitational constant. 

2. Semiclassical Einstein Equations: 

o Formalization: Equations describing the dynamics of classical 

spacetime geometry sourced by quantum matter fields, where the 

stress-energy tensor is replaced by its expectation value. Proposed to 



emerge from the total quantum Hamiltonian in SDIS. 

G<sub>μν</sub> = 8πG⟨T<sub>μν</sub>⟩ 
3. Stress-Energy Tensor (T<sub>μν</sub>): 

o Formalization: A symmetric rank-2 tensor representing the density 

and flux of energy and momentum in spacetime, acting as the source of 

gravity in General Relativity. In SDIS, the macroscopic stress-energy 

tensor emerges from the expectation value of matter field operators and 

geometric stress. 

4. Covariant Conservation Law: 

o Formalization: A fundamental principle in physics stating that energy 

and momentum are conserved in spacetime, expressed mathematically 

by the covariant conservation of the stress-energy tensor. 

∇<sub>μ</sub>T<sup>μν</sup> = 0 

▪ ∇<sub>μ</sub> represents the covariant derivative. 

5. Tolman-Oppenheimer-Volkoff (TOV) Equations: 

o Formalization: A system of ordinary differential equations governing 

the hydrostatic equilibrium of spherically symmetric, non-rotating stars 

in General Relativity. Modified in the neutron star solver to include 

magnetic field contributions. 

o Modified TOV Equations (as a system of ODEs): 

dP/dr = -(G*(eps + P + Pmag)(M + 4πr³(P + Pmag)) / (c²r²*metric) + 

np.gradient(Pmag, r) + (Bz² - Br²)/(2μ₀r)) 

dm/dr = 4πr²(eps + Pmag/c²) 

dT/dr = -cooling_rate(T, rho, B_mag, dT/dr) / specific_heat(T, rho) 

▪ P is pressure, M is enclosed mass, T is temperature, r is radius. 

▪ eps is energy density, Pmag is magnetic pressure. 

▪ G is gravitational constant, c is speed of light, μ₀ is vacuum 

permeability. 

▪ metric = 1 - 2GM/(c²r). 

▪ Br, Bz are magnetic field components. 

▪ cooling_rate and specific_heat are functions describing thermal 

processes. 

6. Equation of State (EoS): 

o Formalization: A thermodynamic relation that describes the state of 

matter under given physical conditions (e.g., pressure as a function of 

density and temperature). Used in the TOV equations to relate pressure 

and energy density to density and temperature. The neutron star solver 

uses a hybrid EoS combining models for different phases (nuclear 

pasta, core, quark matter). 

o Nuclear Pasta Pressure (example power-law): P = kρ<sup>Γ</sup> 

o NJL Model Pressure (example): P = K (ρ/ρ₀)^(2/3) + B (where ρ₀ is a 

reference density) 

7. Magnetohydrodynamics (MHD): 

o Formalization: The study of the dynamics of electrically conducting 

fluids in the presence of magnetic fields. Used to model the evolution 

of the magnetic field within the neutron star. The Hall-MHD equations 

are solved. 

o Hall-MHD Equations (example terms in induction equation): 

∂B/∂t = ∇ × (v × B - ηJ/μ₀ + (J × B)/(e n<sub>e</sub>)) + 

Γ<sub>amb</sub> B ⋅ ∇(B²) 



▪ B is magnetic field, v is velocity, J is current density. 

▪ η is resistivity, μ₀ is vacuum permeability. 

▪ e is elementary charge, n<sub>e</sub> is electron number 

density. 

▪ Γ<sub>amb</sub> is ambipolar diffusion coefficient. 

8. Cooling Rate: 

o Formalization: The rate at which a system loses thermal energy. In 

neutron stars, primarily due to neutrino emission and photon emission. 

Modeled as a function of temperature, density, and magnetic field. 

o Example Cooling Rate Term: 1e21 * T9⁸ * rho14² / (1 + (B12/10)²) 

(using scaled variables) 

9. Specific Heat: 

o Formalization: A thermodynamic property quantifying the amount of 

heat required to change the temperature of a substance. Calculated for 

neutron star matter as a function of temperature and density, 

considering contributions from different particle species. 

10. Gravitational Wave Strain (h): 

o Formalization: A dimensionless quantity representing the fractional 

change in distance caused by a passing gravitational wave. Estimated 

using the quadrupole formula for rotating, magnetized neutron stars. 

h ~ G Q / (c⁴ D) 

▪ Q is the quadrupole moment. 

▪ D is the distance to the source. 

11. Quadrupole Moment (Q): 

o Formalization: A measure of the deviation of a mass distribution from 

spherical symmetry. Calculated for neutron stars after solving the 

structure equations, providing a source for gravitational waves if the 

star is rotating. 

12. Lorentzian Signature: 

o Formalization: The property of a spacetime metric tensor having one 

negative eigenvalue (corresponding to time) and three positive 

eigenvalues (corresponding to space). Crucial for physical realism and 

causality in spacetime. The emergence of Lorentzian signature from 

discrete structures is discussed in SDIS. 

13. Euclidean Signature: 

o Formalization: The property of a metric tensor having all positive 

eigenvalues. Used for spatial sections or in Euclidean quantum gravity 

formulations (like Euclidean Regge Calculus). 

14. Causal Structure: 

o Formalization: The set of causal relationships between events in 

spacetime, defining which events can influence which others. Related 

to the light cone structure and the speed of light. Enforced in CDT and 

SDIS. 

15. Spacetime Curvature: 

o Formalization: A measure of the deviation of spacetime from being 

flat. In GR, it is the gravitational field. In SDIS, it is related to vertex 

stress, deficit angles, and emerges from the simplicial network. 

16. Torsion: 

o Formalization: A property of spacetime geometry, related to the 

twisting of spacetime, that is zero in standard GR but non-zero in 



theories like Einstein-Cartan gravity. In SDIS, torsion is proposed to be 

sourced by gradients in simplicial entanglement entropy. 

17. Holonomy: 

o Formalization: The change in a vector or quantum state when 

transported around a closed loop in a curved space or with a gauge 

connection. In SDIS, holonomies of gauge fields on edges and faces 

are fundamental and relate to geometric phase, curvature, and gauge 

invariance. 

18. Propagator: 

o Formalization: A mathematical function describing the amplitude for 

a particle or excitation to travel between two points. Discussed for 

massless excitations on the coarse-grained simplicial network, showing 

convergence to the relativistic form. 

19. Stress-Strain Relation: 

o Formalization: A relationship between stress and strain in a material, 

describing its elastic response. Adapted for spacetime in SDIS (Planck-

scale Hooke's Law). 

20. Entropy Current: 

o Formalization: A vector field whose divergence represents the rate of 

entropy production per unit volume in spacetime. Used in the 

formulation of the second law of thermodynamics for spacetime. 

21. Expansion Scalar: 

o Formalization: A scalar quantity measuring the rate of volumetric 

expansion of a fluid or spacetime. 

22. Shear Tensor: 

o Formalization: A symmetric and traceless tensor quantifying shear 

deformations or anisotropic distortions of a fluid or spacetime. 

23. Metric Perturbations: 

o Formalization: Small deviations from a background metric, 

representing gravitational waves in linearized General Relativity. 

24. Phase Noise: 

o Formalization: Random fluctuations in the phase of a signal. 

Predicted in gravitational waves due to quantum spacetime effects in 

SDIS. 

25. Memory Jump: 

o Formalization: A sudden, discontinuous change in the amplitude of 

gravitational waves, predicted in black hole mergers due to Planck-

scale effects in SDIS. 

 

N.6 Broader Theoretical Frameworks and Interconnections 

This subcategory covers the mathematical foundations and key concepts of other 

quantum gravity approaches and related fields as they are discussed in comparison or 

relation to SDIS. 

1. Causal Set Theory: 



o Formalization: Posits spacetime as a fundamentally discrete partial 

order (a locally finite partially ordered set). Causality is primary, and 

geometry emerges statistically from the causal relations. 

2. Loop Quantum Gravity (LQG): 

o Formalization: A background-independent approach that quantizes 

spacetime geometry. Uses spin networks (graph-like structures 

carrying representations of SU(2)) and spinfoams (histories of spin 

networks) to represent quantum states of geometry. Predicts discrete 

spectra for geometric operators like area and volume. 

3. Group Field Theory (GFT): 

o Formalization: A field theory whose fundamental excitations are 

quanta of spacetime (often interpreted as simplices or tetrahedra). 

Defined on a group manifold (or related space). Aims to describe the 

emergence of spacetime from a pre-geometric phase. Often uses group-

theoretic variables. 

4. Quantum Graphity: 

o Formalization: A class of quantum gravity models where spacetime 

emerges from a phase transition in a fundamental graph or network. 

The graph evolves according to quantum dynamics. Aims to describe 

the emergence of geometry and gravity from a disordered, non-

geometric phase to an ordered, geometric phase. 

5. Non-commutative Geometry (NCG): 

o Formalization: A mathematical framework that generalizes geometric 

concepts to non-commutative algebras. Provides tools to define 

"quantum spaces," distances, curvature, and topology in a non-

commutative setting. Prioritized in SDIS as a language for quantum 

simplicial geometry. 

o Spectral Standard Model: An application of NCG to particle physics, 

providing a geometric interpretation of the Standard Model gauge 

fields and fermions. 

6. Quantum Information Theory (QIT): 

o Formalization: A framework for quantifying and processing 

information in quantum systems. Provides mathematical tools for 

describing quantum states, operations, entanglement, etc. Prioritized in 

SDIS for describing the informational aspects and quantum dynamics. 

7. Graph Theory: 

o Formalization: The mathematical study of graphs (vertices and 

edges). Used as a supporting tool in SDIS for analyzing network 

structures and relational properties in SDIS and other discrete 

approaches. 

8. Category Theory: 

o Formalization: A mathematical language focused on relationships 

(morphisms) between objects. Considered as a supporting tool in SDIS 

for high-level conceptualization and potentially unifying different 

aspects of the framework. 

9. Open Quantum Systems Theory: 

o Formalization: A framework for describing quantum systems that 

interact with an environment, leading to dissipative dynamics and 

decoherence. Provides the mathematical basis for the Lindblad master 

equation. 



10. Statistical Mechanics: 

o Formalization: A framework to describe macroscopic systems based 

on the statistical behavior of their microscopic constituents. Used as an 

analogy and basis for emergent phenomena in SDIS. 

11. Thermodynamics: 

o Formalization: The study of heat, work, temperature, and energy, and 

their relation to entropy. Discussed in relation to black hole 

thermodynamics, entropic gravity, and the second law of 

thermodynamics for spacetime in SDIS. 

12. Black Hole Thermodynamics: 

o Formalization: The study of the thermodynamic properties of black 

holes, including black hole entropy (proportional to horizon area) and 

Hawking radiation (thermal emission). Provides inspiration and 

consistency checks for quantum gravity theories. 

13. Holographic Principle: 

o Formalization: The principle suggesting that the information content 

of a volume can be encoded on its boundary. Provides inspiration for 

SDIS and is related to black hole entropy and AdS/CFT 

correspondence. 

14. AdS/CFT Correspondence: 

o Formalization: A conjectured duality between a gravitational theory 

in Anti-de Sitter space and a conformal field theory on its boundary. 

Provides a concrete realization of the holographic principle and 

inspiration for entanglement-based emergence ideas. 

15. Entropic Gravity: 

o Formalization: The idea that gravity is not a fundamental force but 

emerges from thermodynamic principles and information, specifically 

from entropy gradients. Provides inspiration for SDIS. 

 

 


