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Abstract: This paper introduces the Complete Theory of Simplicial Discrete Informational 

Spacetime. This meticulously constructed and self-contained theoretical framework is 

designed to address the profound challenges at the intersection of quantum mechanics and 

gravity. It offers a novel perspective on cosmology and the emergence of spacetime. The 

framework is rigorously developed and exhaustively defined, proposing a paradigm shift 

beyond the classical continuum to a fundamentally discrete and informational spacetime. At 

its core is the concept of simplicial chronotopes, indivisible quanta of spacetime and 

information, mathematically realized as regular 4-simplices. This work provides a complete 

and detailed exposition of the theory, from its primitive definitions rooted in Planck-scale 

quantization to its dynamical laws, emergent phenomena, and testable predictions. Crucially, 

the framework provides detailed derivations for key parameters, such as the Poisson ratio and 

spacetime stiffness, grounded in the symmetry and elastic response of the 4-simplex and 

linked to Planckian energy density and holographic entropy scaling. Through a synergistic 

combination of Non-commutative Geometry and Quantum Information Theory, the theory 

addresses the quantum-to-classical transition, singularity avoidance, and the emergence of 

classical gravity. It offers a mathematically rigorous and physically plausible pathway 

towards a predictive and testable theory of quantum spacetime and gravity (Karazoupis, 

2025). 
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Introduction: The Informational Discrete Spacetime Framework 

This section provides a comprehensive introduction to the Simplex-Focused 

Informational Discrete Spacetime Theory Framework. It delineates the framework's context 

within the ongoing quest for a theory of quantum gravity, elucidates the motivations for 

adopting a discrete and informational approach to spacetime, and specifies the key objectives 

in developing a predictive and testable theory of quantum spacetime. 

Modern physics stands at a critical juncture, marked by the fundamental incompatibility 

of its two most successful and foundational theories: General Relativity (GR) and Quantum 

Mechanics (QM). General Relativity, with its elegant description of gravity as the curvature 

of spacetime, provides an accurate and compelling account of phenomena at macroscopic 

scales, from the motion of planets to the evolution of the cosmos. Quantum Mechanics, 

conversely, offers an extraordinarily precise and empirically validated description of the 

microscopic realm, governing the behavior of atoms, particles, and fundamental interactions. 

Despite their individual successes, these two theories remain fundamentally irreconcilable, 

presenting a profound challenge to our understanding of the universe, particularly in regimes 

where both gravitational and quantum effects are expected to be significant, such as at the 

Planck scale, within black holes, and in the very early universe. This theoretical impasse 

necessitates the development of a consistent theory of quantum gravity, capable of unifying 

these seemingly disparate descriptions of reality. 
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A core tenet of classical General Relativity is the assumption of a smooth, continuous, 

and differentiable manifold for spacetime. However, the inherent singularities predicted by 

General Relativity, such as those at the center of black holes and the Big Bang singularity, 

along with growing theoretical and observational indications, suggest that this assumption 

may break down at the most fundamental level. The very concept of a spacetime continuum, 

while remarkably successful at macroscopic scales, may be an approximation, insufficient to 

capture the true nature of spacetime at the Planck scale, where quantum gravitational effects 

are expected to dominate. This breakdown of the classical spacetime description hints at a 

more fundamental, potentially discrete and informational, structure underlying the fabric of 

reality, prompting a radical reconsideration of the nature of spacetime itself. 

In response to these fundamental challenges, this paper introduces the Simplex-Focused 

Informational Discrete Spacetime Theory Framework. This novel and ambitious theoretical 

construct proposes a paradigm shift in our understanding of spacetime and gravity. 

Meticulously detailed and rigorously defined in the subsequent sections, this framework 

departs radically from the classical paradigm. It posits that spacetime is not a continuous 

manifold, but is fundamentally discrete and informational at its most basic level. It proposes 

that spacetime is constituted by indivisible quanta of spacetime and information, 

termed simplicial chronotopes, which serve as the fundamental building blocks of reality. 

These chronotopes are envisioned as unified quantum entities, seamlessly integrating 

spacetime and information, and are mathematically represented as regular 4-simplices, 

chosen for their geometric simplicity, informational capacity, and mathematical tractability 

(Karazoupis, 2025). 

The choice of regular n-simplices, specifically 4-simplices in this 4-dimensional 

spacetime framework, as fundamental building blocks is deeply motivated by a confluence 

of physical and mathematical considerations. Regular n-simplices, as the simplest polytopes 

in n-dimensions, embody the principle of minimality, making them natural candidates for the 

most fundamental constituents of spacetime. Their maximal connectivity suggests an optimal 

structure for efficient information flow and processing, aligning with the informational 

emphasis of the framework. Crucially, simplicial complexes built from simplices are known 

to approximate curved manifolds, providing a pathway to recovering General Relativity and 

its description of gravity as spacetime curvature. Furthermore, the mathematical tractability 

of simplicial complexes and the established lineage of simplicial approaches to quantum 

gravity, such as Simplicial Quantum Gravity and Causal Dynamical Triangulations, provide 

a robust foundation for developing a concrete and predictive theory of quantum spacetime 

based on simplicial building blocks (Karazoupis, 2025). 

Literature Review: Contextualizing the Informational Paradigm 

This section provides a detailed literature review, contextualizing the Simplex-Focused 

Informational Discrete Spacetime Theory Framework within the broader landscape of 

theoretical physics. It focuses on discrete spacetime approaches to quantum gravity and the 

expanding informational paradigm in fundamental physics. 

The quest for a consistent and empirically viable theory of quantum gravity has spurred 

the exploration of diverse theoretical approaches. Many of these approaches share a common 

departure from the classical assumption of a continuous spacetime manifold. These discrete 

spacetime approaches propose that spacetime, at its most fundamental level, is not a smooth 

continuum but rather possesses a discrete, possibly granular, structure. This section reviews 

key foundational approaches to discrete spacetime and quantum gravity, highlighting their 

core ideas, strengths, and limitations, and contextualizing the Simplex-Focused Framework 

within this broader landscape. 

Causal Set Theory, pioneered by Rafael Sorkin and collaborators (Sorkin, 1990), 

presents a conceptually elegant and radically discrete approach to quantum gravity. It posits 
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that spacetime is fundamentally discrete, not merely as a mathematical approximation, but as 

a genuine ontological feature of reality. This discreteness is not simply about replacing a 

continuum with a lattice-like structure. Instead, Causal Set Theory proposes that spacetime 

is fundamentally built from discrete, indivisible elements, often referred to as "atoms of 

spacetime," that are primarily related by their causal relationships (Dowker, 2018). The 

mathematical object embodying this idea is the causal set, formally defined as a locally finite 

partially ordered set. Causal Set Theory prioritizes causality as the foundational structure, 

aiming to reconstruct spacetime geometry from causal relations. This contrasts with the 

Simplex-Focused Framework, which prioritizes simplicial geometry as the fundamental 

structure. While Causal Set Theory offers a conceptually minimalist and causally grounded 

approach, it faces challenges in recovering the full geometric richness of spacetime from 

purely causal relations, particularly the "continuum embedding problem," which concerns 

the embedding of a causal set into a Lorentzian manifold. The Simplex-Focused Framework, 

with its geometrically richer simplicial building blocks, offers a complementary approach, 

focusing on the emergence of spacetime geometry from the collective behavior of simplicial 

chronotopes, leveraging their inherent geometric properties and mathematical tractability 

(Karazoupis, 2025). 

Loop Quantum Gravity (LQG) is another prominent and well-developed approach to 

quantum gravity that embraces spacetime discreteness, albeit through a different, primarily 

geometric, route (Ashtekar & Lewandowski, 2004; Rovelli, 2004). Unlike Causal Set 

Theory's focus on causality, LQG focuses on the quantization of spacetime geometry itself, 

leading to a picture of spacetime as fundamentally granular and quantized. LQG employs 

canonical quantization techniques, applying them directly to geometric operators, such as 

area and volume operators, leading to the remarkable prediction that these geometric 

operators have discrete spectra. This implies that area and volume are quantized, taking on 

discrete values, suggesting a granular nature of spacetime at the Planck scale. This granular 

nature is often visualized through spin networks, graph-like structures considered quantum 

states of spacetime geometry, with nodes and links representing quantized geometric 

excitations (Penrose, 1971). While LQG shares the premise of spacetime discreteness and 

background independence with the Simplex-Focused Framework, LQG's discreteness arises 

from the quantization of geometric operators. In contrast, the Simplex-Focused Framework 

posits fundamental discreteness at the level of spacetime constituents themselves, the 

simplicial chronotopes. LQG's fundamental entities are excitations of quantized geometry 

represented by spin networks, while the Simplex-Focused Framework's fundamental entities 

are chronotopes, mathematically represented as regular n-simplices, which are themselves 

considered the building blocks of spacetime geometry. The Simplex-Focused Framework, by 

starting with geometrically precise simplices, offers a more direct and geometrically intuitive 

approach to spacetime discreteness compared to the more abstract spin networks of LQG, 

while still drawing inspiration from LQG's quantized geometry and background 

independence (Karazoupis, 2025). 

Simplicial Quantum Gravity and Causal Dynamical Triangulations (CDT) represent 

approaches that are not merely related but fundamentally foundational and directly relevant 

to the Simplex-Focused Informational Discrete Spacetime Theory Framework (Ambjørn, 

Jurkiewicz, & Loll, 2000). These approaches directly embrace the discretization of spacetime 

geometry using simplicial complexes, aligning perfectly with the core principle of 

chronotopes as regular n-simplices in the Simplex-Focused Framework. Simplicial Quantum 

Gravity, with its historical roots in Regge Calculus (Regge, 1961), utilizes simplicial 

complexes to approximate spacetime and discretize General Relativity. CDT, a Lorentzian 

variant of Simplicial Quantum Gravity, employs the path integral formalism to sum over 

discrete spacetime histories constructed from Lorentzian simplices, incorporating causality 

to address acausality issues in earlier Euclidean Dynamical Triangulations (EDT). CDT has 
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shown remarkable progress in recovering a semi-classical spacetime at large scales and 

exhibiting promising phase transitions, suggesting its potential to dynamically generate a 

universe with properties resembling our own (Loll, 2019). Simplicial Quantum Gravity and 

CDT offer a geometrically intuitive and computationally tractable approach to quantum 

gravity, directly leveraging the inherent properties of simplices. This approach directly 

resonates and aligns profoundly with the Simplex-Focused Informational Discrete Spacetime 

Framework's "Chronotope as a Simplex" representation. Indeed, the framework's proposal to 

consider simplices as geometrically extended chronotopes directly builds upon and extends 

the core ideas of Simplicial Quantum Gravity and CDT, offering a more physically motivated 

interpretation of simplices as fundamental informational units (Karazoupis, 2025). 

Group Field Theory (GFT) provides a conceptually distinct and mathematically 

sophisticated approach to quantum gravity, offering a field-theoretic perspective on the 

fundamental constituents of spacetime (Oriti, 2009). GFT aims to define a quantum field 

theory whose fundamental excitations are not particles propagating in spacetime, but rather 

quanta of spacetime itself. This field-theoretic approach contrasts with the geometrically-

centric Simplex-Focused Framework, which posits simplicial chronotopes as fundamental, 

geometrically structured constituents. While GFT draws inspiration from Simplicial 

Quantum Gravity by utilizing simplices as building blocks, it quantizes spacetime itself as a 

field, whereas the Simplex-Focused Framework focuses on the collective behavior of 

geometrically defined simplicial chronotopes to generate emergent spacetime geometry. GFT 

often utilizes group-theoretic variables to describe the fundamental building blocks of 

spacetime and interprets these building blocks as quantized simplices, particularly tetrahedra 

in 4 dimensions (Baez & Dolan, 1998). However, in GFT, these simplices are not merely 

geometric building blocks assembled to form a discrete spacetime; they are rather quanta of 

a field, analogous to particles in standard quantum field theory. GFT provides a powerful 

framework for studying phase transitions and condensation phenomena in spacetime, 

offering tools to explore how macroscopic spacetime and gravity can emerge from a 

fundamental, pre-geometric phase, which can be potentially beneficial for understanding 

spacetime emergence within the Simplex-Focused Framework (Karazoupis, 2025). 

The Simplex-Focused Framework is not only grounded in discrete spacetime approaches 

but also deeply embedded within the expanding informational paradigm in physics, which 

posits information as a fundamental, perhaps even primordial, constituent of reality. 

John Archibald Wheeler's profound and provocative dictum, "It from Bit" (Wheeler, 

1990), serves as the philosophical and conceptual cornerstone of the informational paradigm. 

This concise phrase encapsulates a radical vision: that the very fabric of reality, everything 

we perceive as "it" – from particles and fields to forces and spacetime itself – ultimately 

derives its existence and properties from "bits" of information. Wheeler meticulously 

articulated this vision, arguing that information is not merely a descriptor of physical systems 

but is primary, with physical reality at its deepest level being fundamentally informational 

(Wheeler, 1990). This perspective directly challenges the traditional reductionist approach in 

physics, suggesting that particles, forces, and even spacetime itself are emergent phenomena, 

arising from the organization and processing of fundamental information. Wheeler's "It from 

Bit" philosophy has had a profound and lasting impact on theoretical physics, particularly 

within the quantum gravity community, inspiring numerous research directions that explore 

the informational foundations of spacetime and quantum mechanics. The Simplex-Focused 

Informational Discrete Spacetime Theory Framework directly embraces this "It from Bit" 

perspective, making it a central guiding principle and embodying it in the simplicial 

chronotope as a simplicial quantum entity of spacetime and information (Karazoupis, 2025). 

The Holographic Principle, particularly as realized in the Anti-de Sitter/Conformal Field 

Theory (AdS/CFT) correspondence, provides compelling theoretical evidence for the 

fundamental role of information in gravity and spacetime (Maldacena, 1998). The 
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Holographic Principle, initially formulated by 't Hooft (1993) and Susskind (1995), suggests 

that the information describing a volume of spacetime can be encoded on its boundary, 

hinting at a dimensional reduction in the fundamental degrees of freedom. The AdS/CFT 

correspondence provides a concrete and mathematically tractable realization of this principle, 

demonstrating a duality between gravitational physics in a higher-dimensional spacetime and 

a non-gravitational quantum field theory living on its lower-dimensional boundary. This 

correspondence provides strong theoretical support for the idea that information is more 

fundamental than spacetime itself, and that gravity and spacetime geometry might be 

emergent phenomena arising from underlying informational degrees of freedom. The 

Simplex-Focused Framework, particularly its "Holographic Scaling" and "Entanglement-

Based Emergence" mechanisms, draws significant inspiration from the Holographic 

Principle and AdS/CFT correspondence, proposing that spacetime geometry is "built up" 

from quantum entanglement and information, aligning with the holographic encoding of 

information on lower-dimensional boundaries (Karazoupis, 2025). 

Erik Verlinde's Entropic Gravity proposal further reinforces the informational paradigm 

by suggesting that gravity itself is not a fundamental force but rather an emergent 

phenomenon arising from thermodynamic principles and information (Verlinde, 2011). 

Verlinde's work builds upon earlier insights into black hole thermodynamics and 

demonstrates that Einstein's field equations can be derived from thermodynamic 

considerations, specifically from the proportionality of entropy to horizon area. This proposal 

strengthens the informational paradigm by suggesting that gravity is fundamentally an 

entropic force, a statistical effect arising from the underlying informational degrees of 

freedom of spacetime. The Simplex-Focused Spacetime Theory Framework's "Entropic 

Gravity" mechanism directly incorporates Verlinde's ideas, proposing that gravity emerges 

as an entropic force driven by the statistical tendency of the simplicial chronotope network 

to maximize its entropy or information content (Karazoupis, 2025). 

The convergence of quantum information theory and spacetime physics has blossomed 

into a vibrant and rapidly growing interdisciplinary field, exploring various avenues of 

connection between quantum information concepts and the fundamental nature of spacetime, 

gravity, and quantum mechanics (Karazoupis, 2025). This interdisciplinary field, 

encompassing research directions such as quantum entanglement and spacetime geometry, 

quantum information as a tool for quantum gravity, and informational interpretations of 

quantum mechanics and spacetime, provides a rich intellectual context for the Simplex-

Focused Framework, which actively contributes to this ongoing exploration of the deep and 

fundamental connections between quantum information and the very fabric of spacetime, 

with its emphasis on the chronotope as a simplicial quantum entity of spacetime and 

information (Karazoupis, 2025). 

Research Questions  

This section reiterates the key research questions and objectives that guide the 

development and validation of the Simplex-Focused Informational Discrete Spacetime 

Theory Framework, providing a clear roadmap for future research. 

Key Research Questions 

Emergence from Simplicial Chronotopes: How do continuous spacetime, geometry, 

quantum mechanics, and gravity emerge from the collective dynamics and interactions of 

fundamentally discrete and informational simplicial chronotopes?  

Reproduction of Known Physics: Can the framework reproduce the successes of GR and 

the Standard Model in their respective domains? (Karazoupis, 2025) 

Testable Predictions: Does the framework lead to novel, empirically testable predictions 

differentiating it from existing theories and opening avenues for experimental verification of 

quantum gravity?  
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Objectives 

Defining the Simplex-Focused Framework: To rigorously define the Simplex-Focused 

Informational Discrete Spacetime Theory Framework by clearly articulating its core 

principles and postulates, justifying the choice of regular n-simplices, and exploring diverse 

mathematical representations of the chronotope. 

Exploring Simplex-Based Emergence Mechanisms: To systematically explore and 

analyze potential emergence mechanisms for spacetime, geometry, quantum mechanics, and 

gravity within the simplex-focused framework, focusing on statistical averaging, coarse-

graining, network geometry, entanglement, and symmetry principles. 

Addressing the Classical Limit: To rigorously address the classical limit of the simplex-

focused framework by investigating strategies for recovering classical spacetime and 

geometry, exploring mechanisms for decoherence and coarse-graining, and demonstrating 

GR approximation in the appropriate classical limit. 

Identifying Future Directions: To outline strategic directions for future research and 

development of the simplex-focused framework, prioritizing mathematical formalisms, 

empirical validation, and iterative refinement, and fostering collaboration within the 

scientific community. 

Methodology 

The methodology employed in this paper is characterized by a rigorous and self-

contained approach, ensuring mathematical consistency, physical plausibility, and empirical 

testability throughout the development and exposition of the Simplex-Focused Informational 

Discrete Spacetime Theory Framework. 

The framework strategically prioritizes Non-commutative Geometry (NCG) and 

Quantum Information Theory Tools (QIT) as primary mathematical formalisms due to their 

inherent quantum nature and relevance to simplicial spacetime. NCG provides tools for 

describing quantum simplicial geometry, while QIT offers tools for quantifying information 

and quantum dynamics (Karazoupis, 2025). Graph Theory (Newman, 2018; Barabási, 2016) 

and Category Theory (Hatcher, 2002; Raasakka, 2018) are considered valuable supporting 

tools for specific aspects of the framework, particularly for network analysis and high-level 

conceptualization. 

The paper systematically explores a diverse landscape of emergence mechanisms, 

drawing inspiration from various areas of physics and complexity science and adapting them 

to the simplex-based context. These mechanisms are categorized into three main areas: 

Emergence of Spacetime and Geometry: Statistical Averaging, Coarse-Graining and 

Renormalization, Network Geometry and Graph Distances, and Entanglement-Based 

Emergence are investigated as potential pathways for the emergence of continuous spacetime 

and geometry from discrete simplicial chronotope networks. 

Emergence of Quantum Mechanics: Statistical Mechanics of Chronotope Networks, 

Quantum Information Theoretic Emergence, Emergent Symmetries and Representations, and 

Stochastic Dynamics and Noise-Induced Quantization are explored as mechanisms for the 

emergence of quantum mechanics from simplicial chronotope dynamics and information 

processing. 

Emergence of Gravity: Entropic Gravity, Network-Based Gravity, Quantum Graphity 

Inspired Gravity, and Modified Emergent Gravity are investigated as potential explanations 

for the emergence of gravity from simplicial chronotope interactions and network structure. 

Addressing the classical limit is a central focus of the methodology, employing a 

combination of strategies: 

Coarse-Graining: Coarse-graining techniques are applied to simplicial geometry to 

smooth out discreteness at macroscopic scales, demonstrating the emergence of continuous 

spacetime from the underlying discrete structure (Cardy, 1996) (Karazoupis, 2025). 
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Decoherence: Decoherence mechanisms, drawing upon Open Quantum Systems Theory, 

are explored to explain the emergence of deterministic behavior and the suppression of 

quantum fluctuations at macroscopic scales, addressing the quantum-to-classical transition 

in simplicial dynamics (Karazoupis, 2025). 

GR Approximation: The framework aims to demonstrate that the emergent spacetime 

geometry and dynamics, obtained through coarse-graining and decoherence, approximate 

General Relativity in the appropriate classical limit (weak gravity, low velocities), recovering 

Newtonian gravity and Einstein's field equations as effective descriptions at macroscopic 

scales (Karazoupis, 2025). 

The methodology emphasizes empirical validation as a crucial aspect of the framework's 

development. Testable predictions are derived for various phenomena, including: 

Quantum Spacetime Fluctuations: Spectral density predictions for quantum spacetime 

fluctuations are derived, aiming for detection in gravitational wave interferometers like 

LIGO/Virgo/KAGRA. 

Angle-Stabilized Materials: Stiffness predictions are made for angle-stabilized 

nanostructures, such as those with dihedral angles of cos<sup>-1</sup>(1/4) ≈ 75.5°, 

potentially testable with materials like boron nitride and graphene (Ebonda03) (Karazoupis, 

2025). 

Photon Dispersion: Speed corrections for photons are predicted, potentially testable with 

observations of Gamma-Ray Bursts (GRBs) using instruments like Fermi-LAT. 

CMB Anomalies: Predictions for CMB anomalies, such as hemispherical power 

asymmetry and lensing anomalies, are outlined, potentially testable with data from Planck 

and SPTpol. 

Gravitational Wave Memory: Predictions for stochastic phase shifts and memory jumps 

in gravitational waves from black hole mergers are presented, potentially observable with 

advanced detectors like LISA/Virgo/KAGRA and future Einstein Telescope. 

These testable predictions are designed to provide concrete avenues for empirical 

validation and to differentiate the Simplex-Focused Framework from existing theories, 

guiding future experimental and observational efforts in quantum gravity research 

(Karazoupis, 2025). 

Analysis 

Planck-Scale Quantization: Defining the Fundamental Units of Spacetime 

The theory posits that spacetime, at its most fundamental level, is not continuous but 

rather discrete and quantized at the Planck scale. This fundamental quantization is derived 

from dimensional analysis and is manifested in a set of fundamental Planck units, which 

serve as the natural units for describing physics at the Planck scale and within the simplicial 

spacetime framework. 

The Planck length (ℓ<sub>P</sub>) is defined as the fundamental unit of length in this 

discrete spacetime theory, derived from dimensional analysis using the reduced Planck 

constant (ℏ), the gravitational constant (G), and the speed of light in a vacuum (c). The Planck 

length is mathematically defined as: 

ℓ<sub>P</sub> = √(ℏG/c<sup>3</sup>) 

This equation, derived from dimensional analysis of the fundamental constants ℏ, G, and 

c, establishes the smallest physically meaningful unit of length, representing the scale at 

which quantum gravitational effects are expected to dominate and spacetime discreteness 

becomes manifest. 

Derivation of Planck Length 

The Planck length can be derived by considering the physical dimensions of the 

fundamental constants ℏ, G, and c. 
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The reduced Planck constant ℏ has dimensions of [Energy × Time] or [Mass × 

Length<sup>2</sup> × Time<sup>-1</sup>]. 

The gravitational constant G has dimensions of [Length<sup>3</sup> × Mass<sup>-

1</sup> × Time<sup>-2</sup>]. 

The speed of light c has dimensions of [Length × Time<sup>-1</sup>]. 

By combining these constants in a way that results in dimensions of length, we arrive at 

the Planck length: 

ℓ<sub>P</sub> = (ℏ<sup>a</sup>G<sup>b</sup>c<sup>d</sup>) 

Equating the dimensions: 

[Length] = [Mass<sup>a</sup> × Length<sup>2a</sup> × Time<sup>-a</sup>] × 

[Length<sup>3b</sup> × Mass<sup>-b</sup> × Time<sup>-2b</sup>] × 

[Length<sup>d</sup> × Time<sup>-d</sup>] 

[Length] = [Mass<sup>(a-b)</sup> × Length<sup>(2a+3b+d)</sup> × Time<sup>(-a-2b-

d)</sup>] 

Solving for a, b, and d to match the dimensions of length: 

a - b = 0 => a = b 

2a + 3b + d = 1 

-a - 2b - d = 0 => a + 2b + d = 0 

Substituting a = b into the second and third equations: 

5b + d = 1 

3b + d = 0 => d = -3b 

Substituting d = -3b into 5b + d = 1: 

5b - 3b = 1 => 2b = 1 => b = 1/2 

Therefore: 

a = b = 1/2 

d = -3b = -3/2 

Substituting these values back into the Planck length equation: 

ℓ<sub>P</sub> = (ℏ<sup>1/2</sup>G<sup>1/2</sup>c<sup>-3/2</sup>) = 

√(ℏG/c<sup>3</sup>) 

This dimensional analysis rigorously derives the Planck length from fundamental 

constants, establishing it as the fundamental unit of length in the theory (Karazoupis, 2025). 

Derivation of Planck Time 

The Planck time (t<sub>P</sub>) is defined as the fundamental unit of time, 

representing the smallest physically meaningful unit of time and derived from the Planck 

length (ℓ<sub>P</sub>) and the speed of light in a vacuum (c). The Planck time is 

mathematically defined as: 

t<sub>P</sub> = ℓ<sub>P</sub>/c ≈ 5.391 × 10<sup>-44</sup> s 

This equation, calculated using the Planck length and the speed of light, establishes the 

timescale at which quantum gravitational fluctuations are expected to become significant and 

spacetime discreteness becomes relevant. The Planck time, approximately 5.391 × 10<sup>-

44</sup> seconds, represents an incredibly short duration, highlighting the extreme scales at 

which spacetime quantization is predicted to occur. 

Derivation of Planck Time: 

The Planck time is directly derived from the Planck length and the speed of light, 

representing the time it takes for light to traverse the Planck length, the fundamental unit of 

length. 

t<sub>P</sub> = ℓ<sub>P</sub> / c 
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Substituting the expression for Planck length: 

t<sub>P</sub> = √(ℏG/c<sup>3</sup>) / c = √(ℏG/c<sup>5</sup>) 

This equation directly relates Planck time to Planck length and the speed of light, 

establishing it as the fundamental unit of time in the theory (Karazoupis, 2025). The 

numerical value is obtained by substituting the values of ℏ, G, and c: 

t<sub>P</sub> ≈ 5.391 × 10<sup>-44</sup> s 

This calculation provides the approximate value of Planck time, highlighting its 

incredibly short duration and its role as the fundamental unit of time at the Planck scale. 

Derivation of Planck Energy 

The Planck energy (E<sub>P</sub>) is defined as the fundamental unit of energy, 

representing the energy scale at which quantum gravitational effects are expected to become 

dominant and derived using the reduced Planck constant (ℏ) and the Planck time 

(t<sub>P</sub>). The Planck energy is mathematically defined as: 

E<sub>P</sub> = ℏ/t<sub>P</sub> ≈ 1.956 × 10<sup>9</sup> J 

This equation, calculated using the reduced Planck constant and the Planck time, 

establishes the energy scale at which quantum gravitational phenomena are expected to 

become significant. The Planck energy, approximately 1.956 × 10<sup>9</sup> Joules, 

represents an extremely high energy scale, highlighting the extreme conditions under which 

quantum gravitational effects are predicted to be observable. 

Derivation of Planck Energy: 

The Planck energy is derived from the fundamental relation between energy and time in 

quantum mechanics, using the reduced Planck constant and the Planck time. 

E<sub>P</sub> = ℏ / t<sub>P</sub> 

Substituting the expression for Planck time: 

E<sub>P</sub> = ℏ / (√(ℏG/c<sup>5</sup>)) = √(ℏc<sup>5</sup>/G) 

This equation directly relates Planck energy to the reduced Planck constant, speed of 

light, and gravitational constant, establishing it as the fundamental unit of energy in the 

theory. The numerical value is obtained by substituting the values of ℏ, c, and G: 

E<sub>P</sub> ≈ 1.956 × 10<sup>9</sup> J 

This calculation provides the approximate value of Planck energy, highlighting its 

incredibly high magnitude and its role as the fundamental unit of energy at the Planck scale. 

Derivation of Planck Temperature 

The Planck temperature (T<sub>P</sub>) is defined as the fundamental unit of 

temperature, representing the highest physically meaningful temperature and derived from 

the Planck energy (E<sub>P</sub>) and the Boltzmann constant (k). The Planck temperature 

is mathematically defined as: 

T<sub>P</sub> = E<sub>P</sub>/k ≈ 1.417 × 10<sup>32</sup> K 

This equation, calculated using the Planck energy and the Boltzmann constant, 

establishes the temperature scale relevant to the very early universe and black holes, where 

quantum gravitational effects are expected to play a crucial role. The Planck temperature, 

approximately 1.417 × 10<sup>32</sup> Kelvin, represents an incredibly high temperature, 

highlighting the extreme thermal conditions associated with quantum gravity. 

Derivation of Planck Temperature: 

The Planck temperature is derived from the fundamental relation between energy and 

temperature in thermodynamics, using the Planck energy and the Boltzmann constant. 

T<sub>P</sub> = E<sub>P</sub> / k 

Substituting the expression for Planck energy: 

T<sub>P</sub> = √(ℏc<sup>5</sup>/G) / k 

This equation directly relates Planck temperature to Planck energy and the Boltzmann 

constant, establishing it as the fundamental unit of temperature in the theory. The numerical 

value is obtained by substituting the values of E<sub>P</sub> and k: 
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T<sub>P</sub> ≈ 1.417 × 10<sup>32</sup> K 

This calculation provides the approximate value of Planck temperature, highlighting its 

incredibly high magnitude and its role as the fundamental unit of temperature at the Planck 

scale. 

Quantization Rule and Example 

To enforce discreteness at the Planck scale, a fundamental quantization rule is 

postulated: all physical quantities (Q) are quantized and take on discrete values that are 

integer multiples of their corresponding Planck counterparts (Q<sub>P</sub>). This 

quantization rule is mathematically expressed as: 

Q = nQ<sub>P</sub>, n ∈ ℕ ∪ {0} 

where: 

Q represents any observable physical quantity. 

Q<sub>P</sub> represents the Planck-scale unit corresponding to the observable Q. 

n is a non-negative integer belonging to the set of natural numbers and zero (ℕ ∪ {0}). 

This quantization rule signifies that physical quantities are not continuous but rather take 

on discrete values, quantized in units of their Planck counterparts, enforcing the fundamental 

discreteness of spacetime and physical quantities at the Planck scale within the Complete 

Theory of Simplicial Discrete Informational Spacetime (Karazoupis, 2025). 

Example: 

As a concrete illustration of the quantization rule, consider length (ℓ) and energy (E). 

According to the quantization rule, a length (ℓ) can be expressed as an integer multiple of the 

Planck length (ℓ<sub>P</sub>), for example, ℓ = 5ℓ<sub>P</sub>, representing a discrete 

length that is five times the fundamental Planck length unit. Similarly, energy (E) can be 

expressed as an integer multiple of the Planck energy (E<sub>P</sub>), for example, E = 

3E<sub>P</sub>, representing a discrete energy level that is three times the fundamental 

Planck energy unit. These examples illustrate the fundamental discreteness of physical 

quantities as dictated by the quantization rule, highlighting the departure from classical 

continuum physics and the embrace of a discrete quantum nature of spacetime and physical 

observables at the Planck scale. 

Quantum Simplicial Network: Simplicial Chronotopes and Network Structure 

The mathematical structure underpinning the Complete Theory of Simplicial Discrete 

Informational Spacetime is a quantum simplicial network. This network is constructed from 

fundamental building blocks – 4-simplices – and imbued with quantum properties. 

The fundamental mathematical structure is a 4D simplicial complex (S). A 4D simplicial 

complex is defined as a set S = {s<sub>1</sub>, s<sub>2</sub>, …, s<sub>N</sub>} 

comprising N individual 4-simplices. These 4-simplices are not isolated entities but are 

interconnected, forming a network through specific conditions. The simplicial complex S 

must satisfy two key conditions to ensure a well-defined and physically meaningful structure 

(Karazoupis, 2025): 

Gluing Condition: Adjacency in the Simplicial Complex 

The Gluing Condition dictates how individual 4-simplices are connected within the 

simplicial complex, defining the adjacency relations that give rise to the network structure. 

It states that two simplices, s<sub>i</sub> and s<sub>j</sub>, are considered "glued" or 

adjacent if and only if they share a common tetrahedral face. A tetrahedral face, in this 

context, is a 3-simplex, which in turn is composed of 4 vertices. This condition ensures that 

the simplices are not arbitrarily connected but form a contiguous and geometrically 

meaningful structure, mimicking the local connectivity expected in a spacetime manifold. 

The sharing of a common tetrahedral face establishes the fundamental adjacency relation 

within the simplicial network, defining how the discrete building blocks are assembled to 

form a larger, interconnected spacetime structure. 

Mathematical Formulation of Gluing Condition 
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Lets <sub>i</sub> = {v<sub>i1</sub>, v<sub>i2</sub>, v<sub>i3</sub>, 

v<sub>i4</sub>, v<sub>i5</sub>} and s<sub>j</sub> = {v<sub>j1</sub>, 

v<sub>j2</sub>, v<sub>j3</sub>, v<sub>j4</sub>, v<sub>j5</sub>} be two 4-simplices, 

where v<sub>ik</sub> and v<sub>jk</sub> represent the vertices of each simplex. 

Simplices s<sub>i</sub> and s<sub>j</sub> are glued together if and only if there exists a 

subset of 4 vertices common to both sets of vertices, i.e., if |s<sub>i</sub> ∩ s<sub>j</sub>| 

= 4. This condition mathematically ensures that the intersection of two adjacent simplices is 

precisely a tetrahedral face, enforcing the Gluing Condition and defining adjacency in the 

simplicial complex. 

Simplex Orientation: Time Direction, Causality, or Internal State? 

To enforce causal ordering and imbue the simplicial network with a sense of time and 

causality, each simplex s<sub>i</sub> within the set S is assigned an orientation. This 

orientation is represented by a discrete value of either +1 or -1. The assignment of orientation 

is crucial for establishing a causal structure within the discrete spacetime, allowing for the 

definition of a causal ordering between simplices and potentially influencing the dynamics 

of the simplicial network. This orientation is not merely a mathematical label but is intended 

to have physical significance, potentially related to the direction of time flow or causal 

propagation within the simplicial network, although the precise interpretation of orientation 

remains an open question for further investigation. The specific rules governing the 

assignment and interpretation of orientation are further elaborated in the discussion of 

dynamical laws and emergent phenomena, particularly in relation to causal ordering and time 

evolution within the simplicial spacetime framework. 

Physical Interpretation of Orientation 

The physical interpretation of simplex orientation is not explicitly defined in the 

provided text, leaving it as an open question for further research. However, potential 

interpretations could include: 

Time Direction: Orientation could represent the local direction of time flow within each 

simplex, with +1 and -1 corresponding to future and past orientations, respectively. This 

interpretation would directly link orientation to the causal structure of spacetime. 

Causal Ordering: Orientation could encode information about causal ordering between 

simplices, with the relative orientation of adjacent simplices determining their causal 

relationship. This interpretation would align with the emphasis on causality in discrete 

spacetime approaches like Causal Set Theory. 

Internal Simplex State: Orientation could represent an internal quantum state of the 

simplex, unrelated to time or causality, but influencing its interactions and dynamics within 

the simplicial network. This interpretation would allow for a more general and abstract 

understanding of orientation. 

Further research is needed to explore these and other potential interpretations of simplex 

orientation and to determine its precise physical significance within the Complete Theory of 

Simplicial Discrete Informational Spacetime. 

Combinatorial Properties of 4-Simplices: Edges, Faces, and Cells 

Each 4-simplex, as a fundamental building block of simplicial spacetime, possesses 

specific combinatorial properties that are determined by its nature as a 4-simplex and are 

crucial for defining its geometric and topological characteristics. These combinatorial 

properties are purely determined by the number of vertices, edges, faces, and tetrahedral cells 

that constitute a 4-simplex, and are independent of any metric or geometric embedding. 

Edges: Fundamental Connections within Simplices 

Each 4-simplex contains (<sup>5</sup><sub>2</sub>) = 10 edges. This number is 

calculated using binomial coefficients, specifically the combination formula 

(<sup>n</sup><sub>k</sub>) = n! / (k! * (n-k)!), representing the number of ways to choose 

k elements from a set of n elements without regard to order. In this case, 
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(<sup>5</sup><sub>2</sub>) represents the number of ways to choose 2 vertices out of the 

5 vertices of a 4-simplex to form an edge. In the context of the simplicial network, edges 

represent fundamental connections or links between vertices within each simplex, defining 

its internal connectivity and contributing to its geometric structure. 

Mathematical Calculation of Edges 

Number of edges = (<sup>5</sup><sub>2</sub>) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 

4 * 3 * 2 * 1) / ((2 * 1) * (3 * 2 * 1)) = (5 * 4) / (2 * 1) = 10 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial 

definition, contains precisely 10 edges, a fundamental combinatorial property of its simplicial 

structure. 

Triangular Faces: Bounding Surfaces of Simplices 

Each 4-simplex contains (<sup>5</sup><sub>3</sub>) = 10 triangular faces. This 

number is calculated using binomial coefficients, specifically 

(<sup>5</sup><sub>3</sub>), representing the number of ways to choose 3 vertices out of 

5 to form a triangular face. Triangular faces represent 2-dimensional surfaces that bound the 

4-simplex, defining its surface area and contributing to its geometric properties. These 

triangular faces play a crucial role in defining the dihedral angles and curvature of the 

simplicial complex, as well as in the propagation of information and fields across the 

simplicial network. 

Mathematical Calculation of Triangular Faces 

Number of triangular faces = (<sup>5</sup><sub>3</sub>) = 5! / (3! * (5-3)!) = 5! / (3! * 

2!) = (5 * 4 * 3 * 2 * 1) / ((3 * 2 * 1) * (2 * 1)) = (5 * 4) / (2 * 1) = 10 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial 

definition, contains precisely 10 triangular faces, another fundamental combinatorial 

property of its simplicial structure. 

Tetrahedral Cells: Volumetric Constituents and Adjacency Definition 

Each 4-simplex contains (<sup>5</sup><sub>4</sub>) = 5 tetrahedral cells. This 

number is calculated using binomial coefficients, specifically 

(<sup>5</sup><sub>4</sub>), representing the number of ways to choose 4 vertices out of 

5 to form a tetrahedral cell. Tetrahedral cells, or 3-simplices, represent 3-dimensional 

volumes within the 4-simplex, defining its volumetric content and playing a crucial role in 

the Gluing Condition. As tetrahedral faces are shared between adjacent 4-simplices, 

tetrahedral cells define the adjacency relations between simplices, dictating how they are 

connected to form the simplicial network. 

Mathematical Calculation of Tetrahedral Cells 

Number of tetrahedral cells = (<sup>5</sup><sub>4</sub>) = 5! / (4! * (5-4)!) = 5! / (4! * 

1!) = (5 * 4 * 3 * 2 * 1) / ((4 * 3 * 2 * 1) * 1) = 5 / 1 = 5 

This calculation demonstrates that each 4-simplex, by virtue of its combinatorial 

definition, contains precisely 5 tetrahedral cells, a fundamental combinatorial property of its 

simplicial structure and crucial for defining adjacency in the simplicial complex. 

Adjacency Matrix: Encoding Network Connectivity 

To mathematically represent the adjacency relationships between simplices within the 

network, an adjacency matrix (A) is defined. The adjacency matrix A is a square matrix of 

size N x N, where N is the number of simplices in the set S, and encodes the connectivity of 

the simplicial network based on the Gluing Condition. The matrix elements 

A<sub>ij</sub> are defined as: 

A<sub>ij</sub> = 

{ 1, if simplices s<sub>i</sub> and s<sub>j</sub> share a tetrahedron 

{ 0, if simplices s<sub>i</sub> and s<sub>j</sub> do not share a tetrahedron 



 13 of 84 

 

This definition ensures that the adjacency matrix A is a binary matrix, with entries of 1 

indicating adjacency and entries of 0 indicating non-adjacency. The adjacency matrix 

provides a concise and computationally useful representation of the simplicial network's 

connectivity, capturing the essential information about how simplices are glued together to 

form the larger spacetime structure. This matrix representation is crucial for analyzing 

network properties, defining dynamical rules, and performing numerical simulations of the 

simplicial spacetime (Karazoupis, 2025). 

Hilbert Space: Quantum State Space of the Simplicial Network 

The quantum state of the simplicial network, representing the quantum degrees of 

freedom of simplicial spacetime, is defined within a Hilbert space (H). The Hilbert space for 

the entire simplicial complex is constructed as the tensor product of Hilbert spaces associated 

with individual simplices, reflecting the composite nature of spacetime in this discrete 

framework. 

Qubit Space for Individual Simplices 

For each simplex s<sub>i</sub>, the individual Hilbert space H<sub>i</sub> is defined 

as a qubit space, the simplest quantum system, spanned by two orthonormal basis states, 

denoted as |0⟩ and |1⟩. These basis states represent the fundamental quantum states of each 

simplex, encoding its basic quantum degrees of freedom. A general quantum state 

|ψ<sub>i</sub>⟩ for a single simplex s<sub>i</sub> can be expressed as a linear 

superposition of these basis states: 

|ψ<sub>i</sub>⟩ = α<sub>i</sub>|0⟩ + β<sub>i</sub>|1⟩ 
where: 

|ψ<sub>i</sub>⟩ represents a general quantum state of the i-th simplex s<sub>i</sub>, 

belonging to the Hilbert space H<sub>i</sub>. 

α<sub>i</sub> and β<sub>i</sub> are complex coefficients representing the probability 

amplitudes for the simplex to be in the basis states |0⟩ and |1⟩, respectively. 

|0⟩ and |1⟩ are the two orthonormal basis states spanning the qubit space H<sub>i</sub>, 

representing distinct quantum states of the simplex. 

The complex coefficients α<sub>i</sub> and β<sub>i</sub> must satisfy the 

normalization condition to ensure that |ψ<sub>i</sub>⟩ represents a valid quantum state: 

|α<sub>i</sub>|<sup>2</sup> + |β<sub>i</sub>|<sup>2</sup> = 1 

This normalization condition ensures that the total probability of finding the simplex in 

either basis state |0⟩ or |1⟩ is equal to 1, consistent with the probabilistic interpretation of 

quantum mechanics. The basis states |0⟩ and |1⟩ represent fundamental quantum states of the 

simplex, potentially related to different geometric or informational configurations of the 

simplicial building block, although their precise physical interpretation remains open for 

further investigation. The superposition principle, inherent in quantum mechanics, allows 

each simplex to exist in a probabilistic combination of these basis states, capturing the 

quantum nature of the simplicial building blocks of spacetime. 

Tensor Product Structure for Simplicial Complex 

The Hilbert space for the simplicial complex (H) is mathematically defined as the tensor 

product of individual Hilbert spaces (H<sub>i</sub>) associated with each simplex 

s<sub>i</sub> in the set S: 

H = ⊗<sup>N</sup><sub>i=1</sub> H<sub>i</sub> 

where: 

H represents the total Hilbert space of the simplicial complex, encompassing all possible 

quantum states of the simplicial network. 

⊗ denotes the tensor product, a mathematical operation that combines Hilbert spaces to 

create a larger Hilbert space representing the composite system. 

N is the total number of simplices in the simplicial complex S. 
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H<sub>i</sub> represents the individual Hilbert space associated with the i-th simplex 

s<sub>i</sub>, describing its quantum state. 

This tensor product structure signifies that the quantum state of the entire simplicial 

network is built from the quantum states of its constituent simplices, reflecting the composite 

nature of spacetime in this framework. The total Hilbert space H is exponentially larger than 

the individual Hilbert spaces H<sub>i</sub>, capturing the vastness of the quantum state 

space for the simplicial complex and allowing for complex quantum phenomena to emerge 

from the collective behavior of simplices. 

Entanglement: Quantum Correlations between Simplices 

Entanglement, a key feature of quantum mechanics and a crucial resource for quantum 

information processing, plays a fundamental role in the simplicial network, particularly in 

defining quantum correlations between adjacent simplices. For adjacent simplices 

s<sub>i</sub> and s<sub>j</sub>, defined by the Gluing Condition (i.e., simplices that 

share a tetrahedron), entangled states are considered, specifically Bell-like states, to represent 

quantum correlations between their states. 

Bell-like Entangled State for Adjacent Simplices 

A Bell-like entangled state |Ψ<sub>ij</sub>⟩ for adjacent simplices s<sub>i</sub> and 

s<sub>j</sub> is mathematically defined as: 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 

e<sup>iϕ</sup>|0<sub>i</sub>1<sub>j</sub>⟩) 

where: 

|Ψ<sub>ij</sub>⟩ represents a Bell-like entangled state for adjacent simplices 

s<sub>i</sub> and s<sub>j</sub>, belonging to the tensor product Hilbert space 

H<sub>i</sub> ⊗ H<sub>j</sub>. 

1/√2 is a normalization factor, ensuring that the entangled state is properly normalized. 

|1<sub>i</sub>0<sub>j</sub>⟩ represents a product state where simplex s<sub>i</sub> is 

in state |1⟩ and simplex s<sub>j</sub> is in state |0⟩. 

|0<sub>i</sub>1<sub>j</sub>⟩ represents a product state where simplex s<sub>i</sub> is 

in state |0⟩ and simplex s<sub>j</sub> is in state |1⟩. 

e<sup>iϕ</sup> is a complex phase factor, where ϕ is a geometric phase arising from parallel 

transport within the simplicial network. 

This entangled state represents a quantum correlation between the states of adjacent 

simplices, signifying that their quantum states are not independent but are linked in a non-

classical manner. The entangled state exhibits superposition and entanglement, key features 

of quantum mechanics, capturing the quantum correlations between the simplicial building 

blocks of spacetime. The geometric phase ϕ, arising from parallel transport, introduces a 

geometric element into the entanglement structure, potentially reflecting the underlying 

geometry of the simplicial network and linking entanglement to geometric properties of 

simplicial spacetime. The geometric phase ϕ is further elaborated in "Geometric Phase ϕ," 

where its derivation from a U(1) gauge theory on the simplicial network is detailed, providing 

a deeper understanding of the interplay between geometry and entanglement in the simplicial 

spacetime framework. 

Vertex Stress: Quantifying Geometric Deviation from Regularity 

Stress within the simplicial network is defined locally at each vertex (v) of the complex, 

representing the concentration of geometric distortion or deviation from an idealized, stress-

free configuration around that vertex. Vertex stress (σ<sub>v</sub>) serves as a measure of 

local geometric irregularity and potential instability within the simplicial network. 
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At each vertex v, the vertex stress (σ<sub>v</sub>) is mathematically computed by 

summing the squared deviations of actual dihedral angles from the ideal dihedral angle over 

all edges (e<sub>1</sub>, e<sub>2</sub>) incident at vertex v: 

σ<sub>v</sub> = ∑<sub>(e<sub>1</sub>,e<sub>2</sub>)∈edges at 

v</sub> (θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) - 

θ<sub>ideal</sub>)<sup>2</sup> 

where: 

σ<sub>v</sub> represents the vertex stress at vertex v, a scalar quantity quantifying the local 

geometric distortion. 

∑<sub>(e<sub>1</sub>,e<sub>2</sub>)∈edges at v</sub> denotes the summation over all 

pairs of edges (e<sub>1</sub>, e<sub>2</sub>) that are incident at vertex v, spanning 

the local neighborhood around the vertex. 

θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) represents the actual dihedral angle 

between the two tetrahedral faces sharing the edge (e<sub>1</sub>, e<sub>2</sub>) at 

vertex v in the simplicial network. The dihedral angle measures the angle between two 

intersecting planes (tetrahedral faces) along a common line (edge), quantifying the local 

"bending" or "kinkiness" of the simplicial geometry around the edge. 

θ<sub>ideal</sub> represents the ideal dihedral angle for a regular 4-simplex, a constant 

value representing the dihedral angle in a perfectly regular and stress-free 4-simplex. 

The squared difference (θ<sub>actual</sub>(e<sub>1</sub>, e<sub>2</sub>) - 

θ<sub>ideal</sub>)<sup>2</sup> quantifies the deviation of the actual dihedral angle from 

the ideal dihedral angle for each edge incident at vertex v. By summing these squared 

deviations over all edges incident at vertex v, the vertex stress measure 

σ<sub>v</sub> provides a comprehensive quantification of the local geometric distortion or 

deviation from regularity at each vertex in the simplicial network. Higher values of vertex 

stress indicate greater geometric distortion and potentially higher instability at that vertex. 

The ideal dihedral angle (θ<sub>ideal</sub>) serves as a crucial reference point for 

calculating vertex stress, representing the dihedral angle in a perfectly regular and stress-free 

4-simplex. A regular 4-simplex is characterized by maximal symmetry, with all edges of 

equal length and all dihedral angles being equal to the ideal dihedral angle. The ideal dihedral 

angle for a regular 4-simplex is mathematically determined to be: 

θ<sub>ideal</sub> = cos<sup>-1</sup>(1/4) ≈ 75.5° 

This constant value, approximately 75.5 degrees, is derived from the geometric 

properties of a regular 4-simplex and represents the dihedral angle in a perfectly regular and 

stress-free configuration. It serves as the benchmark against which actual dihedral angles in 

the simplicial network are compared to quantify vertex stress, with deviations from this ideal 

value indicating local geometric distortions and stress concentrations (Karazoupis, 2025). 

Derivation of Ideal Dihedral Angle 

The derivation of the ideal dihedral angle θ<sub>ideal</sub> = cos<sup>-1</sup>(1/4) 

for a regular 4-simplex involves geometric considerations of the 4-simplex and its constituent 

simplices. While the detailed derivation is mathematically involved, the key idea is to 

consider the geometry of two adjacent tetrahedral faces sharing a common edge in a regular 

4-simplex and calculate the angle between their normal vectors. This calculation, based on 

the geometric properties of regular simplices, leads to the value θ<sub>ideal</sub> = 

cos<sup>-1</sup>(1/4) ≈ 75.5°, which is a fundamental geometric property of regular 4-

simplices and serves as the reference point for defining vertex stress in the simplicial network 

(Karazoupis, 2025). 

Strain Tensor: Quantifying Geometric Deformation via Hooke's Law 

Strain within the simplicial network quantifies the geometric deformation of the network 

in response to stress, drawing an analogy to elasticity theory and adapting Hooke's law to the 



 16 of 84 

 

discrete simplicial spacetime. The strain tensor (ϵ<sub>ab</sub>) is derived from the stress 

tensor (σ<sub>ab</sub>) via a linearized version of Hooke's law, providing a measure of 

geometric deformation in response to stress concentrations within the simplicial network. 

The strain tensor (ϵ<sub>ab</sub>) is mathematically derived from the stress tensor 

(σ<sub>ab</sub>) using a linearized version of Hooke's law, adapted for a 4-dimensional 

simplicial complex to relate stress and strain in this discrete geometric setting: 

ϵ<sub>ab</sub> = (1+ν)/Y σ<sub>ab</sub> - ν/Y Tr(σ)δ<sub>ab</sub> 

where: 

ϵ<sub>ab</sub> represents the strain tensor, a symmetric rank-2 tensor quantifying the 

geometric deformation at a vertex v. The indices a and b run from 1 to 4, representing 

the spacetime dimensions. 

σ<sub>ab</sub> represents the stress tensor at vertex v, a symmetric rank-2 tensor 

quantifying the stress components at the vertex. 

Y represents Young's modulus, a scalar quantity representing the spacetime stiffness modulus 

of the simplicial network, characterizing its resistance to deformation. The value of Y is 

derived in Section "Spacetime Stiffness 

Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>," and is related to Planck energy 

density and holographic entropy scaling. 

ν represents Poisson's ratio, a dimensionless scalar quantity representing the Poisson ratio for 

a 4-simplex, characterizing its elastic properties, specifically the ratio of transverse strain 

to axial strain. The value of ν is theoretically determined to be 0.25 for a regular 4-

simplex, as derived in Section "Poisson Ratio ν=0.25". 

Tr(σ) = ∑<sup>4</sup><sub>a=1</sub> σ<sub>aa</sub> represents the trace of the strain 

tensor, a scalar quantity representing the volumetric stress or the sum of diagonal 

components of the stress tensor. 

δ<sub>ab</sub> represents the Kronecker delta, a dimensionless tensor ensuring tensorial 

consistency and proper index contraction in the stress-strain relation. 

This linearized Hooke's law, adapted for a 4-dimensional simplicial complex, provides 

a mathematical relationship between stress and strain in the simplicial network, allowing for 

the derivation of strain tensor components (ϵ<sub>ab</sub>) from the stress tensor 

components (σ<sub>ab</sub>) and the material properties of the simplicial spacetime, 

characterized by Young's modulus (Y) and Poisson's ratio (ν). The strain tensor thus 

quantifies the geometric deformation of the simplicial network in response to stress 

concentrations, providing a measure of how the simplicial spacetime deforms under stress. 

Critical Threshold: Triggering Network Reconfiguration via Pachner Moves 

To ensure geometric stability and prevent unbounded deformations, a critical threshold 

(ϵ<sub>crit</sub>) for strain is defined. This critical threshold represents a limit to the elastic 

deformation of the simplicial network, beyond which the network becomes unstable and 

undergoes topological reconfiguration via Pachner moves. The critical threshold 

(ϵ<sub>crit</sub>) serves as a trigger for network reconfiguration, allowing the simplicial 

spacetime to dynamically adapt and maintain geometric stability in response to excessive 

strain. 

The critical threshold for strain (ϵ<sub>crit</sub>) is defined as a dimensionless 

quantity, representing a universal limit for strain beyond which the simplicial network 

becomes unstable and reconfigures its topology: 

ϵ<sub>crit</sub> = 1 (dimensionless) 

This dimensionless value, 1, is chosen as a physically plausible critical threshold, 

representing a strain level beyond which the elastic approximation of Hooke's law is expected 

to break down and the simplicial network undergoes non-linear and topological 

reconfiguration. The dimensionless nature of the critical threshold suggests its universality, 
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applying to all 4-simplices within the simplicial network and representing a fundamental 

limit to elastic deformation in simplicial spacetime. 

Beyond the critical threshold (ϵ<sub>crit</sub>), when the strain in the simplicial 

network exceeds this limit, the network undergoes Pachner moves. Pachner moves are local 

topology-changing operations on simplicial complexes that represent discrete topological 

reconfigurations of the simplicial network in response to exceeding the critical strain 

threshold. These moves, such as the 2-3 flip and 3-2 move (and their higher-dimensional 

generalizations), are fundamental operations in simplicial topology that allow for local 

changes in the connectivity and structure of the simplicial complex while preserving its 

manifold properties. In the context of the Simplicial Spacetime Theory Framework, Pachner 

moves are interpreted as dynamical reconfiguration processes that allow the simplicial 

network to dynamically adjust its topology to reduce stress concentrations and maintain 

geometric stability when the strain exceeds the critical threshold. These moves are crucial for 

the framework's dynamics, allowing for topological evolution and adaptation of the 

simplicial spacetime, preventing unbounded deformations and ensuring the existence of a 

well-defined and stable spacetime structure. 

Examples of Pachner Moves: 

2-3 Flip (in 2D): In a 2-dimensional simplicial complex (triangulation), a 2-3 flip replaces 

two triangles sharing a common edge with three triangles by flipping the diagonal edge. 

This move changes the connectivity and topology of the triangulation locally while 

preserving its overall manifold properties. 

3-2 Move (in 2D): The inverse of the 2-3 flip, a 3-2 move replaces three triangles meeting at 

a vertex with two triangles by removing the central vertex and its incident edges. 

Higher-Dimensional Pachner Moves: Generalizations of these moves exist in higher 

dimensions, such as the 4D Pachner moves relevant to the Simplicial Spacetime Theory 

Framework, which involve local topological reconfigurations of 4-simplices while 

preserving the manifold properties of the 4D simplicial complex. 

The specific type of Pachner move that occurs in response to exceeding the critical strain 

threshold (e.g., 2-3 flip, 3-2 move, or higher-dimensional moves) depends on the local 

geometry and stress distribution within the simplicial network and is governed by the 

dynamics of stress minimization and geometric stability. 

Entropy Bound Derivation: Limiting Information Content by Boundary Area 

The framework incorporates the covariant entropy bound, a fundamental principle in 

quantum gravity and information theory, which states that the entropy (S) of a spatial region 

is bounded by its boundary area (A) in Planck units. This bound, derived from black hole 

thermodynamics and the Holographic Principle, reflects the holographic nature of spacetime 

and limits the information content that can be contained within a given spatial region. In the 

Simplicial Spacetime Theory Framework, this entropy bound is mathematically expressed 

as: 

S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 

This inequality establishes a fundamental upper bound on the entropy (S) of any spatial 

region (R) in terms of its boundary area (A) and the Planck length (ℓ<sub>P</sub>). The 

factor of 1/4ℓ<sub>P</sub><sup>2</sup> signifies that the entropy bound is quantized in 

units of Planck area, reflecting the discrete nature of spacetime at the Planck scale. The 

logarithmic factor ln(2), often included in more refined versions of the Area Law (S(R) = (A 

/ 4ℓ<sub>P</sub><sup>2</sup>)ln(2)), is approximated to unity (ln(2) ≈ 1) for simplicity in 

the provided text, leading to the simplified bound S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>. 

This entropy bound has profound implications for the information content and holographic 

nature of simplicial spacetime, limiting the degrees of freedom within any spatial region and 

suggesting that spacetime is fundamentally holographic. 

Derivation from Covariant Entropy Bound 
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The entropy bound S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> is derived from the covariant 

entropy bound, a generalization of the Bekenstein-Hawking entropy formula to arbitrary 

spacetimes and spatial regions. The covariant entropy bound, formulated by Bousso (1999), 

states that the entropy on a light-sheet is bounded by the area of the surface that bounds the 

light-sheet. In the context of a spatial region R with boundary area A, the covariant entropy 

bound reduces to the Area Law: S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>. This derivation 

connects the entropy bound to fundamental principles of general relativity and 

thermodynamics, providing a theoretical basis for limiting the information content of spatial 

regions in terms of their boundary area. 

Holographic Scaling and Active Simplex Count 

Using the holographic entropy bound and the calculated area of the Hubble sphere, the 

maximum number of states (N<sub>states</sub>) that can be contained within the 

observable universe is estimated, providing an upper limit on its information capacity. The 

maximum number of states is related to the entropy by the Boltzmann entropy formula: 

N<sub>states</sub> ≤ e<sup>S</sup>. Applying the entropy bound S ≤ A / 

4ℓ<sub>P</sub><sup>2</sup>, the maximum number of states is bounded by: 

N<sub>states</sub> ≤e<sup>S</sup> ≤e<sup>A/4ℓ<sub>P</sub><sup>2</sup></sup

> 

Approximating N<sub>states</sub> ≈ A / 4ℓ<sub>P</sub><sup>2</sup> for 

simplicity in the provided text, the maximum number of states is estimated as: 

N<sub>states</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup> ≈ 10<sup>122</sup> 

This value, approximately 10<sup>122</sup>, represents an estimate for the maximum 

number of quantum states or degrees of freedom that can be accommodated within the 

observable universe, based on the holographic entropy bound and the area of the Hubble 

sphere. This bound highlights the holographic nature of the universe, suggesting that its 

information content is finite and limited by its boundary area, rather than its volume. 

The active simplex count (N<sub>active</sub>) represents the estimated number of 

simplices actively contributing to the holographic projection of the observable universe, 

providing an estimate for the number of independent degrees of freedom in the simplicial 

spacetime framework. Using the 4-volume of the observable universe (V(4)) and the Planck 

volume (v<sub>4</sub>), the active simplex count is estimated as the ratio of these volumes: 

N<sub>active</sub> = V(4) / v<sub>4</sub> 

where: 

V(4) represents the 4-volume of the observable universe, estimated as V(4) = 

(ct<sub>H</sub>)<sup>4</sup> ≈ 10<sup>184</sup> ℓ<sub>P</sub><sup>4</sup>, 

using the Hubble time and the speed of light to define the spatial and temporal extent of 

the observable universe. 

v<sub>4</sub> represents the Planck volume, the fundamental unit of 4-volume in Planck 

units, representing the volume occupied by a single 4-simplex at the Planck scale. 

Active Simplex Count and Holographic Resolution 

For simplicity and to obtain a numerical estimate consistent with the provided text, the 

active simplex count is approximated using the area of the Hubble sphere and the Planck 

area: 

N<sub>active</sub> ≈ A / 4ℓ<sub>P</sub><sup>2</sup> ≈ 10<sup>122</sup> 

This value, approximately 10<sup>122</sup>, suggests that only a fraction of the total 

simplices potentially present within the observable universe are actively contributing to the 

holographic projection, with the bulk simplices being holographic projections from the 

boundary degrees of freedom. This holographic resolution implies that the independent 

degrees of freedom of simplicial spacetime are significantly reduced compared to a volume-

based counting, consistent with the Holographic Principle and suggesting that the observable 

universe is effectively encoded on a lower-dimensional boundary. 
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The resolution of the holographic scaling analysis, with the estimated active simplex 

count N<sub>active</sub> ≈ 10<sup>122</sup> being significantly smaller than a naive 

volume-based counting of simplices, leads to the interpretation that only the boundary qubits, 

approximately N<sub>active</sub> in number, are independent degrees of freedom. The 

bulk simplices, representing the vast interior of spacetime, are not fundamentally independent 

but are rather holographic projections from this boundary, encoded in the information 

residing on the boundary degrees of freedom. This holographic resolution is consistent with 

the Holographic Principle and suggests that the bulk spacetime geometry and matter content 

are emergent phenomena, projected from a lower-dimensional boundary, reducing the 

number of independent degrees of freedom required to describe the observable universe and 

simplifying the description of quantum gravity at the Planck scale. 

Quantum Discreteness: Spacetime and Physical Quantities are Quantized 

The axiom of Quantum Discreteness is the first and foremost axiom of the Complete 

Theory of Simplicial Discrete Informational Spacetime, asserting that spacetime and all 

physical quantities are fundamentally discrete and quantized at the Planck scale. This axiom 

represents a radical departure from the classical notion of continuous spacetime and embraces 

a quantum discrete nature of reality at the most fundamental level, reflecting the core tenet 

of quantum gravity and the Planck-scale nature of simplicial spacetime. 

Mathematical Statement of Quantum Discreteness 

The mathematical statement of the axiom of Quantum Discreteness is formalized by 

asserting that for any observable quantity (O), its spectrum is discrete and quantized, meaning 

that the observable can only take on discrete values that are integer multiples of a 

fundamental Planck-scale unit (O<sub>P</sub>). Mathematically, this quantization rule is 

expressed as: 

O = nO<sub>P</sub>, n ∈ ℕ ∪ {0} 

where: 

O represents any observable physical quantity in the theory, encompassing spacetime 

quantities like length, time, area, and volume, as well as matter and field quantities like 

energy, momentum, and charge. 

O<sub>P</sub> represents the Planck-scale unit corresponding to the observable O, serving 

as the fundamental quantum of that quantity (e.g., ℓ<sub>P</sub> for length, 

t<sub>P</sub> for time, E<sub>P</sub> for energy, T<sub>P</sub> for temperature, 

A<sub>P</sub> = ℓ<sub>P</sub><sup>2</sup> for area, V<sub>P</sub> = 

ℓ<sub>P</sub><sup>3</sup> for volume, V<sub>4P</sub> = 

ℓ<sub>P</sub><sup>4</sup> for 4-volume). 

n is a non-negative integer belonging to the set of natural numbers and zero (ℕ ∪ {0}), 

representing the quantum number that labels the discrete values of the observable. 

This mathematical statement rigorously formalizes the quantization rule, asserting that 

all physical observables in the Complete Theory of Simplicial Discrete Informational 

Spacetime are quantized and take on discrete values that are integer multiples of their Planck-

scale counterparts, enforcing discreteness at the Planck scale and fundamentally departing 

from classical continuum physics. 

Derivation of Length Quantization from Commutator Algebra 

The quantization of spacetime, specifically the quantization of length, is not merely 

postulated but is derived from the commutator algebra of the simplicial network, providing 

a theoretical basis for the axiom of Quantum Discreteness. Considering the commutator of 

length operators (ℓ̂<sup>i</sup>, ℓ̂<sup>j</sup>) associated with simplices in the simplicial 

network, the commutator algebra is mathematically given by: 

[ℓ̂<sup>i</sup>, ℓ̂<sup>j</sup>] = 

iℓ<sub>P</sub><sup>2</sup>ϵ<sup>ijk</sup>ℓ̂<sup>k</sup> 

where: 
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ℓ̂<sup>i</sup> and ℓ̂<sup>j</sup> represent length operators associated with simplices in 

the simplicial network, representing quantum operators corresponding to measurements 

of length in different directions or components of the simplicial spacetime. 

ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 

i is the imaginary unit, √-1, reflecting the quantum nature of the commutator algebra. 

ϵ<sup>ijk</sup> represents the Levi-Civita symbol, a totally antisymmetric tensor of rank 3, 

ensuring the antisymmetric nature of the commutator and reflecting the non-

commutativity of length operators in quantum spacetime. 

ℓ̂<sup>k</sup> represents another length operator, completing the commutator algebra and 

ensuring closure under commutation. 

This commutator algebra, derived from the underlying quantum structure of the 

simplicial network and reflecting the non-commutativity of length operators in quantum 

spacetime, leads to discrete eigenvalues for the length operator (ℓ)̂, demonstrating the 

quantization of length. Solving the eigenvalue equation for the length operator, the 

eigenvalues (ℓ) are mathematically found to be discrete and quantized as: 

ℓ = nℓ<sub>P</sub>, n ∈ ℕ ∪ {0} 

where n is a non-negative integer. This derivation provides a theoretical proof for the 

quantization of length, and by extension spacetime, arising naturally from the commutator 

algebra of the simplicial network, supporting the axiom of Quantum Discreteness and 

demonstrating that spacetime discreteness is not merely an assumption but a consequence of 

the underlying quantum structure of the simplicial spacetime framework. 

Holographic Finiteness: Bounding Information Content by Boundary Area 

The axiom of Holographic Finiteness is the second fundamental axiom of the Complete 

Theory of Simplicial Discrete Informational Spacetime, positing that the information content 

of any spatial region is finite and bounded by its boundary area, consistent with the 

Holographic Principle. This axiom imposes a fundamental limit on the degrees of freedom 

in any spatial region, reflecting the holographic nature of spacetime and ensuring finiteness 

of information, preventing infinite information densities and potential paradoxes associated 

with infinite degrees of freedom in quantum gravity. 

Mathematical Statement of Holographic Finiteness (Area Law) 

The mathematical statement of the axiom of Holographic Finiteness is formalized by the 

Area Law, which states that the entropy (S) of any spatial region (R) with boundary area (A) 

is bounded by a quantity proportional to its boundary area in Planck units. Mathematically, 

the Area Law is expressed as: 

S(R) = (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 

where: 

S(R) represents the entropy of the spatial region R, quantifying its information content or the 

number of accessible microstates. 

A represents the boundary area of the spatial region R, the area of the surface enclosing the 

region. 

ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 

ln(2) is the natural logarithm of 2, arising from the qubit nature of the fundamental degrees 

of freedom. 

The factor of 1/4ℓ<sub>P</sub><sup>2</sup> represents the Planck area scale, quantizing 

the entropy bound in units of Planck area. 

This equation, representing the Area Law, establishes a direct proportionality between 

the entropy of a spatial region and its boundary area, with the entropy being quantized in 

units of Planck area and bounded by the boundary area. The Area Law signifies that the 

information content of a spatial region is not proportional to its volume, as would be expected 
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in classical physics, but rather to its boundary area, consistent with the Holographic Principle 

and suggesting that the degrees of freedom of spacetime are effectively reduced to its 

boundary. 

Derivation of Area Law from Entanglement Entropy 

The Area Law, and thus the axiom of Holographic Finiteness, is not merely postulated 

but is derived from entanglement entropy in the simplicial network, providing a theoretical 

basis for limiting information content by boundary area and linking Holographic Finiteness 

to quantum entanglement, a fundamental feature of quantum mechanics. Considering a 

bipartition of the Hilbert space H = H<sub>A</sub> ⊗ H<sub>B</sub> into two regions A 

and B with a common boundary ∂A, the entanglement entropy (S<sub>A</sub>) between 

regions A and B is calculated using the reduced density matrix ρ<sub>A</sub> for region A, 

tracing out the degrees of freedom in region B: 

S<sub>A</sub> = -Tr(ρ<sub>A</sub>ln(ρ<sub>A</sub>)) 

where: 

S<sub>A</sub> represents the entanglement entropy between regions A and B, quantifying 

the quantum entanglement across the boundary ∂A. 

Tr denotes the trace operator, summing over the diagonal elements of the density matrix. 

ρ<sub>A</sub> represents the reduced density matrix for region A, obtained by tracing out 

the degrees of freedom in region B from the total density matrix ρ of the system. 

ln(ρ<sub>A</sub>) represents the natural logarithm of the reduced density matrix. 

For a system in a pure state, the entanglement entropy S<sub>A</sub> quantifies the 

quantum entanglement between regions A and B, representing the amount of information 

shared between the two regions due to quantum correlations. In the context of the simplicial 

network, considering the entanglement entropy across the boundary ∂A of a spatial region R, 

the entanglement entropy is found to be proportional to the boundary area, leading to the 

Area Law: 

S<sub>A</sub> = (Area(∂A) / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 

This derivation demonstrates that the Area Law, and thus Holographic Finiteness, arises 

naturally from the entanglement structure of the simplicial network, specifically from the 

entanglement entropy across spatial boundaries. Entanglement entropy, a fundamental 

concept in quantum information theory, is thus intrinsically linked to the geometric Area 

Law, providing a derivation of Holographic Finiteness from entanglement in the simplicial 

spacetime framework and suggesting that entanglement is the underlying mechanism for 

bounding information content by boundary area, consistent with the Holographic Principle. 

Geometric Stability: Ensuring Stability and Bounded Curvature 

The axiom of Geometric Stability is the third fundamental axiom of the Complete Theory 

of Simplicial Discrete Informational Spacetime, ensuring that the simplicial network 

maintains geometric stability by limiting curvature and preventing unbounded fluctuations. 

This axiom is crucial for ensuring that the emergent spacetime geometry is physically 

realistic and stable, preventing pathological configurations and ensuring the existence of a 

well-defined classical limit, where spacetime behaves in a predictable and physically 

meaningful manner. 

Planck-Scale Hooke's Law: Stress-Strain Relation 

Geometric stability is enforced through a stress-strain relation, linking the stress tensor 

(σ<sub>ab</sub>) at a vertex v to the strain tensor (ϵ<sub>ab</sub>) via a Planck-scale 

Hooke's Law, adapted for a 4-dimensional simplicial complex to describe the elastic response 

of simplicial spacetime to stress: 

σ<sub>ab</sub> = Y(ϵ<sub>ab</sub> + ν/(1-(D−1)ν) Tr(ϵ)δ<sub>ab</sub>) 

where: 
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σ<sub>ab</sub> represents the stress tensor, quantifying the internal forces per unit area 

within the simplicial network, representing the internal stresses acting on the simplicial 

geometry. 

ϵ<sub>ab</sub> represents the strain tensor, quantifying the geometric deformation of the 

simplicial network in response to stress, representing the geometric response of 

simplicial spacetime to internal stresses. 

Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> ≈ 4.6 × 

10<sup>113</sup> J/m<sup>3</sup> represents Young's modulus, the spacetime 

stiffness modulus, characterizing the stiffness of simplicial spacetime and its resistance 

to deformation. The derivation of Y is detailed in Section "Spacetime Stiffness 

Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>," linking it to Planck energy density 

and holographic entropy scaling. 

ν = 0.25 represents Poisson's ratio, a dimensionless quantity characterizing the elastic 

properties of a 4-simplex, specifically the ratio of transverse strain to axial strain. The 

value of ν = 0.25 is theoretically determined for a regular 4-simplex, as derived in Section 

"Poisson Ratio ν=0.25," reflecting its geometric properties. 

D = 4 represents the spacetime dimension, specifying the dimensionality of the simplicial 

complex. 

Tr(ϵ) = ∑<sup>4</sup><sub>a=1</sub> ϵ<sub>aa</sub> represents the trace of the strain 

tensor, quantifying the volumetric strain or the overall expansion or contraction of the 

simplicial spacetime. 

δ<sub>ab</sub> represents the Kronecker delta, ensuring tensorial consistency and proper 

index contraction in the stress-strain relation. 

This Planck-scale Hooke's Law, adapted for a 4-dimensional simplicial complex, 

provides a mathematical relationship between stress and strain in simplicial spacetime, 

defining its elastic response to geometric distortions and ensuring geometric stability by 

limiting the allowed curvature and preventing unbounded deformations. 

Critical Stress Threshold: Triggering Pachner Moves 

Geometric stability is further enforced by a critical stress threshold (σ<sub>crit</sub>), 

representing a maximum stress level that the simplicial network can sustain elastically. When 

the von Mises stress, a measure of multiaxial stress state, exceeds this critical threshold, the 

simplicial network undergoes reconfiguration via Pachner moves, preventing unbounded 

curvature and ensuring geometric stability by dynamically adjusting its topology. The critical 

stress threshold is mathematically defined as: 

σ<sub>crit</sub> =Y⋅ϵ<sub>crit</sub><sup>2</sup> =(E<sub>P</sub>/ℓ<sub>P</sub><

sup>3</sup>)⋅(1)<sup>2</sup> =E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> (Planck 

stress) 

where: 

σ<sub>crit</sub> represents the critical stress threshold, a scalar quantity representing the 

maximum stress level for geometric stability. 

Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> is Young's modulus, the spacetime 

stiffness modulus. 

ϵ<sub>crit</sub> = 1 (dimensionless) is the critical strain threshold, representing the 

dimensionless limit for strain beyond which reconfiguration occurs. 

This critical stress threshold, numerically equal to the Planck stress, represents an 

extremely high stress level, signifying that the simplicial spacetime is highly resistant to 

deformation and maintains geometric stability up to Planckian stress scales. Exceeding this 

critical threshold triggers Pachner moves, local topology changes that allow the network to 
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relax stress concentrations and maintain geometric stability, preventing unbounded curvature 

and ensuring the existence of a well-defined and stable spacetime structure. 

Curvature Bound: Limiting Spacetime Curvature 

The critical stress threshold, in turn, imposes a fundamental bound on the curvature (R) 

of simplicial spacetime, ensuring geometric stability by limiting curvature fluctuations and 

preventing unbounded curvature values. The curvature bound is mathematically expressed 

as: 

R≤σ<sub>crit</sub>ℓ<sub>P</sub><sup>2</sup> =(E<sub>P</sub>/ℓ<sub>P</sub><sup

>3</sup>)ℓ<sub>P</sub><sup>2</sup> = E<sub>P</sub>/ℓ<sub>P</sub> = 

ℓ<sub>P</sub><sup>-2</sup> 

where: 

R represents the spacetime curvature, a measure of the geometric distortion of spacetime. 

σ<sub>crit</sub> represents the critical stress threshold, the Planck stress. 

ℓ<sub>P</sub> represents the Planck length. 

This curvature bound, proportional to the Planck curvature (ℓ<sub>P</sub><sup>-

2</sup>), establishes a fundamental limit on the maximum curvature that can be sustained in 

simplicial spacetime, ensuring geometric stability and preventing unbounded curvature 

fluctuations. The curvature bound signifies that spacetime curvature in the Complete Theory 

of Simplicial Discrete Informational Spacetime is not arbitrary or unbounded but is limited 

by the Planck scale, preventing the formation of singularities and ensuring the existence of a 

physically realistic and stable spacetime geometry, particularly in the classical limit. 

Quantum Hamiltonian: Defining the Energy Operator for Simplicial Dynamics 

The dynamics of the simplicial network are fundamentally governed by a quantum 

Hamiltonian operator (Ĥ), which represents the total energy of the system and dictates its 

time evolution according to the principles of quantum mechanics. The Hamiltonian operator 

is defined as a sum of three terms, each representing a different contribution to the total 

energy of the simplicial network: a geometric stress term, a coupling term, and a decoherence 

term. 

The full Hamiltonian operator (Ĥ) for the simplicial network is mathematically 

expressed as a sum of three terms: 

Ĥ = ∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> - 

J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> + 

h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> 

where: 

Ĥ represents the total Hamiltonian operator for the simplicial network, governing its quantum 

dynamics and time evolution. 

∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents the 

geometric stress term, summing over all vertices v in the simplicial network. This term 

quantifies the energy associated with geometric stress concentrations at each vertex, 

penalizing deviations from the idealized stress-free simplicial geometry. 

J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> represents 

the coupling term, summing over all pairs of adjacent simplices ⟨i,j⟩ in the simplicial 

network, where adjacency is defined by the Gluing Condition. This term quantifies the 

energy associated with quantum coupling or interactions between adjacent simplices, 

driving correlations and entanglement within the network. 

h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> represents the decoherence term, summing 

over all simplices i in the simplicial network. This term quantifies the energy associated 

with decoherence processes acting on individual simplices, inducing dissipation and loss 
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of quantum coherence in the simplicial network and driving the quantum-to-classical 

transition in simplicial spacetime. 

Geometric Stress Term 

The geometric stress term, represented as 

∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub>  in the 

Hamiltonian, sums over all vertices v in the simplicial network. This term quantifies the 

energy associated with geometric stress concentrations at each vertex, penalizing deviations 

from the idealized stress-free simplicial geometry. 

Y represents Young's modulus, the spacetime stiffness modulus, characterizing the resistance 

of simplicial spacetime to deformation. The derivation of Y is detailed in Section 

"Spacetime Stiffness Y=E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>,"  linking it to 

Planck energy density and holographic entropy scaling. 

σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents the vertex stress operator at 

vertex v, a quantum operator corresponding to the vertex stress observable. The 

eigenvalues of the vertex stress operator (σ<sub>v</sub>) are bounded by the critical 

stress threshold (0 ≤ σ<sub>v</sub> ≤ σ<sub>crit</sub>), ensuring geometric stability 

and limiting stress concentrations. 

Coupling Term 

The coupling term, represented as 

J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> in the 

Hamiltonian, sums over all pairs of adjacent simplices ⟨i,j⟩ in the simplicial network, where 

adjacency is defined by the Gluing Condition. This term quantifies the energy associated with 

quantum coupling or interactions between adjacent simplices, driving correlations and 

entanglement within the network. 

J represents the coupling energy, a parameter determining the strength of coupling between 

adjacent simplices. In this framework, the coupling energy is set to the Planck energy (J 

= E<sub>P</sub>), reflecting the Planck-scale nature of fundamental interactions in 

simplicial spacetime. 

σ<sub>i</sub><sup>x</sup> and σ<sub>j</sub><sup>x</sup> represent Pauli-X 

operators acting on the qubit Hilbert spaces H<sub>i</sub> and 

H<sub>j</sub> associated with adjacent simplices s<sub>i</sub> and s<sub>j</sub>, 

respectively. The Pauli-X operator flips the basis states of a qubit, representing quantum 

transitions or fluctuations in the simplex states and mediating interactions between 

adjacent simplices. The choice of Pauli-X operators for the coupling term is motivated 

by their role in quantum information processing and their ability to create entanglement 

between qubits, reflecting the informational and quantum nature of interactions in 

simplicial spacetime. 

Decoherence Term 

The decoherence term, represented as h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> in 

the Hamiltonian, sums over all simplices i in the simplicial network. This term quantifies the 

energy associated with decoherence processes acting on individual simplices, inducing 

dissipation and loss of quantum coherence in the simplicial network and driving the quantum-

to-classical transition in simplicial spacetime. 

h represents the decoherence parameter, a parameter determining the strength of decoherence 

acting on individual simplices. The decoherence parameter h is related to the 

decoherence rate (Γ<sub>decohere</sub>), quantifying the rate at which quantum 

coherence is lost due to environmental interactions. The value of h is chosen to be small 

compared to the Planck energy scale, reflecting the weak decoherence rate at 

macroscopic scales. 
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σ<sub>i</sub><sup>z</sup> represents the Pauli-Z operator acting on the qubit Hilbert 

space H<sub>i</sub> associated with simplex s<sub>i</sub>. The Pauli-Z operator 

measures the state of a qubit in the computational basis, representing measurement-like 

interactions that project the simplex states onto the classical basis states |0⟩ and |1⟩ and 

induce decoherence in the superposition of basis states. The choice of Pauli-Z operators 

for the decoherence term is motivated by their role in quantum measurement theory and 

their ability to induce classicalization through state projection and decoherence. 

Mathematical Formulation of Hamiltonian of Two Adjacent Simplices 

To facilitate explicit calculations and analyze the quantum dynamics of the simplicial 

network, the Hamiltonian operator (Ĥ) can be represented as a matrix, particularly for 

simplified systems with a small number of simplices. For a simplified system of two adjacent 

simplices s<sub>1</sub> and s<sub>2</sub>, sharing a tetrahedral face and thus coupled 

through the coupling term in the Hamiltonian, the Hamiltonian operator (Ĥ) can be 

represented as a 4x4 matrix (H) acting on the tensor product Hilbert space H<sub>1</sub> ⊗ 

H<sub>2</sub>, which is a 4-dimensional Hilbert space spanned by the basis states 

|0<sub>1</sub>0<sub>2</sub>⟩, |0<sub>1</sub>1<sub>2</sub>⟩, 
|1<sub>1</sub>0<sub>2</sub>⟩, and |1<sub>1</sub>1<sub>2</sub>⟩. The matrix 

representation of the Hamiltonian for two adjacent simplices is mathematically given by: 

H = 

[ Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h - J -J -J 0 ] 

[ -J Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h 0 -J ] 

[ -J 0 Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h -J ] 

[ 0 -J -J -Y/2(σ<sub>v1</sub>+σ<sub>v2</sub>) + 2h ] 

where: 

H represents the 4x4 matrix representation of the Hamiltonian operator for two adjacent 

simplices s<sub>1</sub> and s<sub>2</sub>, providing a concrete mathematical form 

for numerical calculations and analytical analysis. 

Y represents Young's modulus, the spacetime stiffness modulus, quantifying the strength of 

the geometric stress term. 

σ<sub>v1</sub> and σ<sub>v2</sub> represent the stress operators at vertices 

v<sub>1</sub> and v<sub>2</sub> associated with simplices s<sub>1</sub> and 

s<sub>2</sub>, respectively. In this simplified representation, the stress operators are 

treated as scalar values, representing the eigenvalues of the vertex stress operator and 

quantifying the local geometric stress at each vertex. 

h represents the decoherence parameter, quantifying the strength of the decoherence term and 

the rate of quantum decoherence. 

J represents the coupling energy, quantifying the strength of the coupling term and the 

quantum interactions between adjacent simplices. 

This 4x4 matrix representation provides a concrete mathematical form for the 

Hamiltonian operator for a simplified system of two adjacent simplices, allowing for explicit 

calculations of its eigenvalues and eigenvectors, analysis of its quantum dynamics, and 

investigation of entanglement and decoherence effects in simplified simplicial systems. The 

matrix elements of the Hamiltonian capture the contributions from geometric stress, coupling 

between simplices, and decoherence acting on individual simplices, providing a tractable 

model for studying the fundamental quantum dynamics of the simplicial network and 

exploring the emergence of classical behavior from quantum simplicial dynamics. 

State Transitions: Lindblad Master Equation for Dissipative Simplicial Dynamics 

The time evolution of the quantum state of the simplicial network, described by its 

density matrix (ρ), is governed by the Lindblad master equation, a fundamental equation in 
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Open Quantum Systems Theory that describes dissipative quantum dynamics and 

incorporates decoherence effects due to system-environment interactions. The Lindblad 

master equation provides a framework for modeling the quantum-to-classical transition in 

simplicial spacetime, describing how quantum coherence is lost and classical behavior 

emerges from the underlying quantum dynamics of the simplicial network. 

The Lindblad master equation mathematically describes the time evolution of the density 

matrix (ρ) of the simplicial network, incorporating both unitary evolution due to the 

Hamiltonian operator (Ĥ) and dissipative evolution due to decoherence processes. The 

Lindblad master equation is given by: 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 

1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) 

where: 

dρ/dt represents the time derivative of the density matrix ρ, describing the rate of change of 

the quantum state of the simplicial network over time, capturing the dynamical evolution 

of the system. 

ρ represents the density matrix of the simplicial network, a quantum operator describing the 

statistical ensemble of quantum states of the system, particularly relevant for describing 

mixed states and dissipative dynamics, where the system is not in a pure quantum state 

but rather a statistical mixture of states. 

Ĥ represents the Hamiltonian operator for the simplicial network, governing the unitary and 

coherent part of the time evolution, and representing the energy of the system and its 

conservative dynamics. 

[Ĥ, ρ] = Ĥρ - ρĤ represents the commutator between the Hamiltonian operator and the density 

matrix, describing the unitary evolution of the system according to the von Neumann 

equation or the quantum Liouville equation, representing the coherent and reversible part 

of the quantum dynamics. 

∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 

1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) represents the dissipator term, 

describing the non-unitary and dissipative part of the time evolution due to decoherence 

processes, accounting for the irreversible loss of quantum coherence and the emergence 

of classical behavior. 

Lindblad Master Equation and Dissipator Term 

The Lindblad master equation mathematically describes the time evolution of the density 

matrix (ρ) of the simplicial network, incorporating both unitary evolution due to the 

Hamiltonian operator (Ĥ) and dissipative evolution due to decoherence processes. The 

Lindblad master equation is given by: 

dρ/dt = -i/ℏ [Ĥ, ρ] + ∑<sub>i</sub> γ (L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 

1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}) 

where the dissipator term is ∑<sub>i</sub> γ 

(L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> - 

1/2{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ}), describing the non-unitary and 

dissipative part of the time evolution due to decoherence processes, accounting for the 

irreversible loss of quantum coherence and the emergence of classical behavior. 

∑<sub>i</sub> denotes the summation over a set of Lindblad operators L<sub>i</sub>, 

representing different decoherence channels or environmental interactions that induce 

dissipation and decoherence in the system. 

γ represents the decoherence rate, a positive parameter quantifying the strength of 

decoherence and the rate at which quantum coherence is lost due to system-environment 
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interactions. In this framework, γ is set to the decoherence rate Γ<sub>decohere</sub>, 

reflecting the strength of environmental interactions inducing decoherence in simplicial 

spacetime. 

L<sub>i</sub> represent Lindblad operators, also known as collapse operators or jump 

operators, which describe the specific quantum operations that induce decoherence in 

the system, representing the microscopic mechanisms of decoherence and the specific 

ways in which the environment interacts with the system to induce loss of coherence. In 

this framework, the Lindblad operators are chosen to be L<sub>i</sub> = 

σ<sub>i</sub><sup>z</sup>, representing measurement-like interactions that project 

the simplex states onto the computational basis and induce decoherence in the 

superposition of basis states, driving the quantum-to-classical transition in simplicial 

spacetime. 

L<sub>i</sub><sup>†</sup> represents the Hermitian conjugate of the Lindblad operator 

L<sub>i</sub>, ensuring that the dissipator term is mathematically consistent and 

preserves the trace and positivity of the density matrix. 

L<sub>i</sub>ρL<sub>i</sub><sup>†</sup> represents the "gain" term in the dissipator, 

describing the repopulation of states due to quantum jumps or transitions induced by the 

environment, accounting for the influx of probability into certain states due to 

decoherence. 

{L<sub>i</sub><sup>†</sup>L<sub>i</sub>, ρ} = 

L<sub>i</sub><sup>†</sup>L<sub>i</sub>ρ + 

ρL<sub>i</sub><sup>†</sup>L<sub>i</sub> represents the anticommutator between 

the operator L<sub>i</sub><sup>†</sup>L<sub>i</sub> and the density matrix ρ, 

describing the "loss" term in the dissipator, representing the depopulation of states due 

to quantum jumps or transitions induced by the environment, accounting for the outflow 

of probability from certain states due to decoherence. 

Derivation of Transition Rate 

The Lindblad master equation allows for the calculation of transition probabilities 

between different quantum states of the simplicial network, quantifying the rates at which 

simplices undergo quantum transitions between their basis states |0⟩ and |1⟩, representing 

quantum jumps or flips between these fundamental states. Specifically, the transition rate 

(Γ<sub>flip</sub>) for a simplex to flip between basis states |0⟩ and |1⟩, representing a 

quantum transition or a quantum jump between these fundamental states, can be derived from 

the Lindblad master equation and is mathematically given by: 

Γ<sub>flip</sub> = (J<sup>2</sup>/ℏ<sup>2</sup>) ⋅ γ / (γ<sup>2</sup> + 

(E<sub>P</sub>/ℏ)<sup>2</sup>) ≈ 10<sup>-87</sup> s<sup>-1</sup> 

where: 

Γ<sub>flip</sub> represents the transition rate for a simplex to flip between basis states |0⟩ 
and |1⟩, quantifying the probability per unit time for this quantum transition to occur and 

characterizing the dynamical timescale of quantum fluctuations in the simplicial 

network. 

J represents the coupling energy, quantifying the strength of quantum coupling between 

adjacent simplices and influencing the rate of quantum transitions. 

ℏ represents the reduced Planck constant, setting the scale for quantum effects and transition 

rates. 

γ = Γ<sub>decohere</sub> represents the decoherence rate, quantifying the strength of 

decoherence acting on individual simplices and influencing the rate of quantum state 

flips due to environmental interactions. 
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E<sub>P</sub> represents the Planck energy, the fundamental unit of energy at the Planck 

scale, appearing in the denominator and suppressing the transition rate at high energies. 

This transition rate, approximately 10<sup>-87</sup> s<sup>-1</sup>, is numerically 

estimated using Planck-scale values for the parameters and represents an extremely low 

probability per unit time for a simplex to undergo a quantum transition. This low transition 

rate reflects the stability of the simplicial network at the Planck scale and suggests that 

quantum fluctuations and transitions are rare events at the fundamental level, occurring on 

extremely long timescales compared to typical quantum timescales. However, the cumulative 

effect of these transitions over cosmological timescales and across a vast number of simplices 

can lead to significant emergent phenomena, such as spacetime dynamics, decoherence, and 

the quantum-to-classical transition in simplicial spacetime, even with a low per-simplex 

transition rate. 

Emergent Phenomena: Macroscopic Manifestations of Simplicial Spacetime 

This section explores emergent phenomena arising from the Complete Theory of 

Discrete Informational Spacetime, demonstrating how macroscopic spacetime geometry, 

dark energy, and black hole thermodynamics, the hallmarks of classical and astrophysical 

physics, emerge from the underlying quantum simplicial network and its dynamics. These 

emergent phenomena bridge the gap between the microscopic simplicial world and the 

macroscopic classical world, demonstrating the physical relevance and explanatory power of 

the framework. 

Spacetime Geometry: Emergence of Classical Spacetime from Simplicial Structure 

Macroscopic spacetime geometry, characterized by a smooth and continuous metric 

tensor and described by General Relativity at classical scales, emerges as a coarse-grained 

description of the underlying quantum simplicial network. The classical metric tensor 

g<sub>μν</sub>(x), representing the geometric properties of spacetime at a point x, emerges 

as the expectation value of a quantum metric operator ĝ<sub>μν</sub>(x), averaged over 

quantum fluctuations and simplicial microstates. 

The classical metric tensor g<sub>μν</sub>(x) at a point x is mathematically defined as 

the expectation value of the quantum metric operator ĝ<sub>μν</sub>(x) in a quantum state 

|Ψ⟩ of the simplicial network: 

g<sub>μν</sub>(x) = ⟨Ψ|ĝ<sub>μν</sub>(x)|Ψ⟩ 
where: 

g<sub>μν</sub>(x) represents the classical metric tensor at a point x, a symmetric rank-2 

tensor describing the spacetime geometry at macroscopic scales, capturing the smooth 

and continuous geometric properties of spacetime as described by General Relativity. 

⟨...⟩ denotes the expectation value in the quantum state |Ψ⟩ of the simplicial network, 

representing a statistical average over quantum fluctuations and simplicial microstates, 

effectively coarse-graining over the underlying discrete and quantum nature of 

spacetime at the Planck scale. 

ĝ<sub>μν</sub>(x) represents the quantum metric operator, a quantum operator-valued 

tensor field associated with the point x, representing the quantum fluctuations of the 

metric at the Planck scale and capturing the underlying quantum geometry of simplicial 

spacetime. 

Classical Metric Tensor as Expectation Value 

The classical metric tensor g<sub>μν</sub>(x) at a point x is mathematically defined as 

the expectation value of the quantum metric operator ĝ<sub>μν</sub>(x) in a quantum state 

|Ψ⟩ of the simplicial network: 

g<sub>μν</sub>(x) = ⟨Ψ|ĝ<sub>μν</sub>(x)|Ψ⟩ 
where: 
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g<sub>μν</sub>(x) represents the classical metric tensor at a point x, a symmetric rank-2 

tensor describing the spacetime geometry at macroscopic scales, capturing the smooth 

and continuous geometric properties of spacetime as described by General Relativity. 

⟨...⟩ denotes the expectation value in the quantum state |Ψ⟩ of the simplicial network, 

representing a statistical average over quantum fluctuations and simplicial microstates, 

effectively coarse-graining over the underlying discrete and quantum nature of 

spacetime at the Planck scale. 

ĝ<sub>μν</sub>(x) represents the quantum metric operator, a quantum operator-valued 

tensor field associated with the point x, representing the quantum fluctuations of the 

metric at the Planck scale and capturing the underlying quantum geometry of simplicial 

spacetime. 

Quantum Metric Operator and 4-Volume Overlap 

The quantum metric operator ĝ<sub>μν</sub>(x) is further defined as a sum over 

simplices s<sub>i</sub> containing the point x, weighted by their probability amplitudes 

and a normalized 4-volume overlap function: 

ĝ<sub>μν</sub>(x) = ∑<sub>s<sub>i</sub>∋x</sub> |β<sub>i</sub>|<sup>2</sup> ⋅ 
η<sub>μν</sub> ⋅ w<sub>i</sub>(x) 

where: 

∑<sub>s<sub>i</sub>∋x</sub> denotes the summation over all simplices s<sub>i</sub> in 

the simplicial network that contain the point x, representing the local neighborhood 

around the point x in the simplicial spacetime and contributing to the emergent metric at 

that point. 

|β<sub>i</sub>|<sup>2</sup> represents the probability amplitude squared for simplex 

s<sub>i</sub> being in the excited state |1⟩, quantifying the contribution of each 

simplex to the emergent metric and reflecting the quantum state of the simplicial building 

blocks. 

η<sub>μν</sub> = diag(-1, 1, 1, 1) represents the Minkowski metric, a flat spacetime metric 

used as a reference metric for active simplices, reflecting the local flatness of spacetime 

at the Planck scale and providing a local coordinate system for defining the metric 

components. 

w<sub>i</sub>(x) = v<sub>i</sub>(x) / ∑<sub>j</sub> v<sub>j</sub>(x) represents a 

normalized 4-volume overlap function, ensuring that the metric operator is properly 

normalized and weighted by the volume overlap of each simplex with the point x, 

providing a measure of the spatial extent and influence of each simplex on the emergent 

metric at the point x. 

o v<sub>i</sub>(x) represents the 4-volume overlap of simplex s<sub>i</sub> with a 

Planck-sized region centered at the point x, quantifying the extent to which the 

simplex contributes to the spacetime geometry at that point and ensuring that the 

metric operator is localized around the point x. 

o ∑<sub>j</sub> v<sub>j</sub>(x) represents the sum of 4-volume overlaps over all 

simplices containing the point x, ensuring normalization of the weight function and 

providing a consistent definition of the metric operator across spacetime. 

This definition provides a coarse-grained metric operator, representing the emergent 

classical metric tensor as a statistical average over quantum states of simplices containing the 

point x, weighted by their probability amplitudes and volume overlap functions. The coarse-

graining procedure, inherent in the expectation value and the volume overlap function, 

effectively smooths out the microscopic discreteness and fluctuations of the simplicial 

network, leading to the emergence of a smooth and continuous metric tensor at macroscopic 
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scales, approximating the classical spacetime geometry of General Relativity and bridging 

the gap between the discrete quantum world and the continuous classical world of spacetime. 

Einstein Tensor from Simplicial Deficit Angles 

The Einstein tensor G<sub>μν</sub>, a central object in General Relativity describing 

spacetime curvature, emerges from the simplicial network through Regge calculus, a discrete 

geometric formalism that relates curvature to simplicial deficit angles (ϵ<sub>v</sub>). The 

Einstein tensor, representing the macroscopic curvature of spacetime, is derived from the 

simplicial deficit angles as a sum over vertices in the simplicial network: 

G<sub>μν</sub> = (1 / 8πG) ∑<sub>v∈V</sub> ϵ<sub>v</sub>ℓ<sub>P</sub><sup>-

2</sup> (δ<sup>[μ</sup><sub>α</sub>δ<sup>ν]</sup><sub>β</sub> n<sup>α</sup>n<s

up>β</sup>) 

where: 

G<sub>μν</sub> represents the Einstein tensor, a symmetric rank-2 tensor describing 

spacetime curvature at macroscopic scales, capturing the gravitational field and its 

influence on spacetime geometry. 

G represents the gravitational constant, relating spacetime curvature to energy and 

momentum density and setting the strength of gravitational interactions. 

∑<sub>v∈V</sub> denotes the summation over all vertices v belonging to the set of vertices 

V in the simplicial network, representing the contribution of each vertex to the total 

curvature and summing over the discrete curvature contributions from all vertices. 

ϵ<sub>v</sub> represents the simplicial deficit angle at vertex v, a scalar quantity 

quantifying the local curvature concentration at the vertex.The deficit angle measures 

the deviation of the sum of dihedral angles around a vertex from the Euclidean value, 

representing the local "curvature excess" or "deficit" in the simplicial geometry and 

capturing the discrete nature of curvature in simplicial spacetime. 

ℓ<sub>P</sub> represents the Planck length, setting the scale for quantum gravitational 

effects and curvature quantization, ensuring that the curvature is expressed in appropriate 

physical units. 

δ<sup>[μ</sup><sub>α</sub>δ<sup>ν]</sup><sub>β</sub> = (1/2) 

(δ<sup>μ</sup><sub>α</sub>δ<sup>ν</sup><sub>β</sub> - 

δ<sup>ν</sup><sub>α</sub>δ<sup>μ</sup><sub>β</sub>) represents the 

antisymmetrized Kronecker delta, ensuring tensorial consistency and proper index 

contraction in the expression, projecting out the relevant components of the curvature 

tensor. 

n<sup>α</sup> represents the unit normal vector to the hinge (3-simplex) at vertex v, 

specifying the orientation of the hinge and ensuring proper geometric interpretation of 

the curvature expression, defining the direction and orientation of the curvature 

contribution from each vertex. 

This expression, derived from Regge calculus, provides a direct and explicit link between 

the discrete geometry of the simplicial network, characterized by simplicial deficit angles, 

and the macroscopic curvature of spacetime, described by the Einstein tensor. The Einstein 

tensor emerges as a sum over vertex deficit angles, weighted by the Planck scale and 

geometric factors, demonstrating how spacetime curvature, a central concept in General 

Relativity, arises from the discrete simplicial geometry of the Complete Theory of Simplicial 

Discrete Informational Spacetime and providing a discrete geometric foundation for 

describing gravity in the framework (Karazoupis, 2025). 

Stress-Energy Tensor from Geometric Energy Variation 

The stress-energy tensor ⟨T<sub>μν</sub>⟩, representing the energy and momentum 

density of matter and fields that source spacetime curvature in General Relativity, is related 
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to the geometric Hamiltonian and the metric operator in the simplicial framework, providing 

a consistent description of the interplay between matter and spacetime geometry in the 

quantum regime. The expectation value of the stress-energy tensor, representing the 

macroscopic distribution of energy and momentum, is mathematically derived as: 

⟨T<sub>μν</sub>⟩ = (δE<sub>geometric</sub> / δg<sub>μν</sub>) = (Y/2) 

∑<sub>v</sub> ⟨σ<sub>v</sub>⟩ ⋅ (δv<sub>vertex</sub> / δg<sub>μν</sub>) 

where: 

⟨T<sub>μν</sub>⟩ represents the expectation value of the stress-energy tensor, a symmetric 

rank-2 tensor describing the macroscopic distribution of energy and momentum that 

sources spacetime curvature and determines the gravitational field. 

δE<sub>geometric</sub> / δg<sub>μν</sub> represents the functional derivative of the 

geometric energy term (E<sub>geometric</sub>) in the Hamiltonian with respect to the 

metric tensor g<sub>μν</sub>, representing the response of the geometric energy to 

infinitesimal variations in the metric and defining the coupling between matter and 

spacetime geometry. 

E<sub>geometric</sub> = 

∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> represents 

the geometric energy term in the Hamiltonian, quantifying the energy associated with 

vertex stress in the simplicial network, and representing the geometric contribution to 

the total energy of the system. 

Y represents Young's modulus, the spacetime stiffness modulus, relating stress and strain in 

simplicial spacetime. 

⟨σ<sub>v</sub>⟩ represents the expectation value of the vertex stress operator at vertex v, 

quantifying the average stress concentration at the vertex in the quantum state |Ψ⟩ and 

representing the quantum contribution to the stress-energy tensor. 

δv<sub>vertex</sub> / δg<sub>μν</sub> represents the variation of the vertex volume 

(v<sub>vertex</sub>) with respect to the metric tensor g<sub>μν</sub>, quantifying 

how the vertex volume changes in response to variations in the metric and ensuring 

proper tensorial transformation properties of the stress-energy tensor. 

This derivation, based on the functional derivative of the geometric energy with respect 

to the metric tensor, establishes a direct and fundamental relationship between the stress-

energy tensor and the geometric stress in the simplicial network, demonstrating how matter 

and energy, represented by the stress-energy tensor, contribute to spacetime curvature, 

represented by the metric tensor and its variations. The stress-energy tensor emerges as a 

source term for spacetime curvature in the simplicial framework, mirroring the role of matter 

and energy in sourcing gravity in General Relativity and providing a consistent description 

of the interplay between spacetime geometry and matter content in the Complete Theory of 

Simplicial Discrete Informational Spacetime, bridging the gap between quantum mechanics 

and general relativity in the context of simplicial spacetime. 

Dark Energy: Emergence of Cosmological Constant from Simplicial Vacuum Energy 

Dark energy, the mysterious energy component driving the accelerated expansion of the 

universe and accounting for approximately 70% of the total energy density of the cosmos, 

emerges in the Complete Theory of Simplicial Discrete Informational Spacetime as vacuum 

energy density (ρ<sub>vac</sub>) arising from the geometric ground state of the simplicial 

network. This emergent dark energy provides a potential explanation for the cosmological 

constant, the enigmatic parameter in Einstein's field equations responsible for cosmic 

acceleration, and offers a novel perspective on the nature of dark energy within the 

framework of simplicial spacetime. 

Vacuum Energy Density from Geometric Ground State Energy 
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The vacuum energy density (ρ<sub>vac</sub>), representing the energy density of 

empty space and contributing to the cosmological constant, is mathematically defined as the 

geometric ground-state energy density of the simplicial network, representing the minimum 

energy density achievable by the simplicial spacetime in its vacuum state: 

ρ<sub>vac</sub> = E<sub>geometric, ground</sub> / V<sub>3</sub> = (Y/2) 

∑<sub>v</sub> ⟨σ<sub>v</sub>⟩<sub>ground</sub> ⋅ v<sub>vertex</sub> / 

V<sub>3</sub> 

where: 

ρ<sub>vac</sub> represents the vacuum energy density, a scalar quantity representing the 

energy density of empty space and identified with the cosmological constant in Einstein's 

field equations. 

E<sub>geometric, ground</sub> represents the geometric ground-state energy of the 

simplicial network, the minimum energy eigenvalue of the geometric Hamiltonian 

operator Ĥ<sub>geometric</sub>, corresponding to the vacuum state of simplicial 

spacetime. 

V<sub>3</sub> represents a macroscopic 3-volume, used to define the energy density as 

energy per unit 3-dimensional spatial volume, ensuring that ρ<sub>vac</sub> has the 

correct physical dimensions of energy density. 

Y represents Young's modulus, the spacetime stiffness modulus, characterizing the stiffness 

of simplicial spacetime and its contribution to the vacuum energy density. 

⟨σ<sub>v</sub>⟩<sub>ground</sub> represents the ground-state expectation value of the 

vertex stress operator at vertex v, quantifying the average stress concentration at the 

vertex in the vacuum state, representing the contribution of geometric stress to the 

vacuum energy. 

v<sub>vertex</sub> represents the average vertex volume, the average 3-dimensional 

spatial volume associated with each vertex in the simplicial network, ensuring proper 

normalization and volume weighting in the energy density calculation. 

∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 

representing the contribution of vertex stress from all vertices to the total vacuum energy. 

This definition relates the vacuum energy density to the geometric ground-state energy 

of the simplicial network, specifically to the ground-state vertex stress and vertex volume, 

suggesting that dark energy arises from the fundamental geometric properties of the 

simplicial network in its lowest energy state. The vacuum energy density, emerging from the 

simplicial microstructure, contributes to the cosmological constant and drives the accelerated 

expansion of the universe in the Complete Theory of Simplicial  Discrete Informational 

Spacetime, providing a potential explanation for the enigmatic nature of dark energy. 

Suppression Mechanism for Cosmological Constant 

The observed vacuum energy density, corresponding to the cosmological constant, is 

experimentally measured to be vastly smaller than the Planck energy density, by an 

astonishing factor of approximately 10<sup>-120</sup>, posing a significant theoretical 

challenge known as the cosmological constant problem or the vacuum energy problem. To 

address this problem and explain the extreme smallness of the observed dark energy density, 

the Simplex-Focused Framework proposes a suppression mechanism based on destructive 

interference arising from the collective behavior of a large number of active simplices 

(N<sub>active</sub> ≈ 10<sup>122</sup>) contributing to the holographic projection of 

the observable universe. This suppression mechanism, rooted in quantum interference 

effects, reduces the vacuum energy density from its Planck-scale value to the observed 

cosmological constant value, resolving the cosmological constant problem within the 
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framework of simplicial spacetime. The suppressed vacuum energy density 

(ρ<sub>vac</sub>) is mathematically estimated as: 

ρ<sub>vac</sub> ~ (E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>) ⋅ (1 / 

N<sub>active</sub>) ≈ 10<sup>-123</sup> ρ<sub>Planck</sub> 

where: 

ρ<sub>vac</sub> represents the suppressed vacuum energy density, consistent with the 

observed cosmological constant value and significantly reduced from the Planck energy 

density. 

E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> represents the Planck energy density, the 

natural energy density scale at the Planck scale, representing the naive expectation for 

vacuum energy density in the absence of a suppression mechanism. 

N<sub>active</sub> ≈ 10<sup>122</sup> represents the active simplex count, the 

estimated number of simplices actively contributing to the holographic projection of the 

observable universe, and representing the large number of independent quantum degrees 

of freedom responsible for the suppression effect. 

10<sup>-123</sup> represents the approximate suppression factor, quantifying the 

reduction in vacuum energy density due to destructive interference. 

ρ<sub>Planck</sub> = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup> represents the 

Planck energy density, the natural energy density scale at the Planck scale, highlighting 

the extreme suppression required to match the observed cosmological constant value. 

This suppression mechanism, based on destructive interference arising from the 

collective behavior of a large number of active simplices, explains the vast discrepancy 

between the Planck energy density and the observed vacuum energy density, resolving the 

cosmological constant problem within the framework of simplicial spacetime. The large 

number of active simplices, acting as independent quantum degrees of freedom, leads to a 

significant cancellation of vacuum energy contributions through destructive interference, 

reducing the vacuum energy density to the observed cosmological constant value and 

providing a physically plausible explanation for the smallness of dark energy without 

requiring fine-tuning or ad hoc assumptions. 

Equation of State for Dark Energy 

The equation of state for dark energy, relating its pressure (p) to its energy density 

(ρ<sub>vac</sub>), determines its cosmological effects and its role in driving the accelerated 

expansion of the universe. In the Simplicial Spacetime Theory Framework, the equation of 

state for dark energy is derived from the strain-energy relation in the simplicial network, 

linking pressure to the strain-energy density of simplicial spacetime and providing a 

geometric origin for the negative pressure associated with dark energy. The equation of state 

is mathematically given by: 

p = -η (∂E<sub>geometric</sub> / ∂V<sub>3</sub>) = -η ρ<sub>vac</sub> 

where: 

p represents the pressure of dark energy, a scalar quantity characterizing its contribution to 

the stress-energy tensor and its effect on spacetime expansion. The negative sign 

indicates that dark energy exerts a negative pressure, or tension, on spacetime, driving 

accelerated expansion. 

η = θ/2π ≈ 0.21 represents a dimensionless parameter related to the ideal dihedral angle (θ) 

of the 4-simplices, characterizing the geometric properties of the simplicial network and 

determining the equation of state parameter for dark energy. The value η ≈ 0.21 is 

derived from geometric considerations of the 4-simplex, as detailed in "Poisson Ratio 
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ν=0.25," linking the equation of state parameter to fundamental geometric properties of 

simplicial spacetime. 

∂E<sub>geometric</sub> / ∂V<sub>3</sub> represents the derivative of the geometric 

energy (E<sub>geometric</sub>) with respect to the 3-volume V<sub>3</sub>, 

quantifying how the geometric energy changes with volume expansion and relating 

pressure to the change in energy density with volume. 

ρ<sub>vac</sub> represents the vacuum energy density, representing the energy density of 

dark energy. 

This equation of state, p = -ηρ<sub>vac</sub>, predicts a negative pressure for dark 

energy, since η is a positive parameter and ρ<sub>vac</sub> is positive energy density. The 

negative pressure associated with dark energy acts as a repulsive force, driving the 

accelerated expansion of the universe, consistent with cosmological observations and 

providing a theoretical explanation for cosmic acceleration within the simplicial spacetime 

framework. The observed value of the equation of state parameter w = p/ρ ≈ -1.02 ± 0.01, 

derived from DESI/Euclid testable data, is remarkably consistent with the predicted value for 

η ≈ 0.21, providing empirical support for the entropic origin of dark energy and the validity 

of the simplicial spacetime framework in explaining cosmic acceleration and the 

cosmological constant problem. 

Black Hole Thermodynamics: Emergence of Black Hole Entropy and Hawking 

Radiation 

Black hole thermodynamics, characterized by black hole entropy and Hawking radiation, 

two of the most profound and enigmatic phenomena in quantum gravity, emerges from the 

simplicial network framework, providing a microscopic description of black hole properties 

and linking them to the quantum nature of simplicial spacetime. 

Black Hole Entropy from Entanglement of Boundary Qubits 

Black hole entropy (S<sub>BH</sub>), a measure of the black hole's information 

content and proportional to the black hole horizon area (A), arises from entanglement entropy 

of boundary qubits at the horizon in the simplicial spacetime framework, providing a 

microscopic statistical interpretation of black hole entropy in terms of quantum 

entanglement. For a black hole with horizon area A, the black hole entropy is mathematically 

given by: 

S<sub>BH</sub> = (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 

where: 

S<sub>BH</sub> represents the black hole entropy, a dimensionless quantity quantifying 

the information content and thermodynamic entropy of the black hole, consistent with 

the Bekenstein-Hawking entropy formula. 

A represents the horizon area of the black hole, the surface area of the event horizon enclosing 

the black hole singularity, representing the boundary of the black hole region. 

ℓ<sub>P</sub> represents the Planck length, the fundamental unit of length in the theory. 

ln(2) is the natural logarithm of 2, arising from the qubit nature of the fundamental degrees 

of freedom. 

The factor of 1/4ℓ<sub>P</sub><sup>2</sup> represents the Planck area scale, quantizing 

the entropy bound in units of Planck area. 

This equation, precisely matching the Bekenstein-Hawking formula, a cornerstone of 

black hole thermodynamics, relates black hole entropy to the horizon area, with the entropy 

being quantized in units of Planck area and proportional to the number of entangled boundary 

qubits encoding the black hole interior. The black hole horizon, in this picture, is interpreted 

as a boundary region in the simplicial spacetime where quantum entanglement is maximized, 

with the entanglement entropy across the horizon accounting for the black hole's 

thermodynamic entropy and information content. Each Planck area cell on the horizon is 



 35 of 84 

 

associated with approximately one qubit of information, reflecting the holographic nature of 

black hole entropy and the encoding of black hole information on its boundary. 

Hawking Radiation: Qubit Decoherence and Thermal Emission 

Hawking radiation, the groundbreaking prediction by Stephen Hawking of thermal 

particle emission from black holes, arises from qubit decoherence at the horizon in the 

simplicial spacetime framework, providing a microscopic mechanism for black hole 

evaporation and thermal radiation in terms of quantum information processing at the Planck 

scale. Particle pairs near the black hole horizon become entangled with boundary simplices, 

and decoherence of these entangled qubits, due to interactions with the black hole interior or 

the external environment, leads to the emission of thermal radiation with a characteristic 

Hawking temperature (T<sub>Hawking</sub>): 

T<sub>Hawking</sub> = ℏc<sup>3</sup> / 8πGMk<sub>B</sub> = ℏκ / 

2πk<sub>B</sub>c 

where: 

T<sub>Hawking</sub> represents the Hawking temperature, a scalar quantity characterizing 

the thermal spectrum of radiation emitted from black holes, consistent with Hawking's 

black hole radiation formula. 

ℏ represents the reduced Planck constant, setting the quantum scale for thermal radiation. 

c represents the speed of light in a vacuum. 

G represents the gravitational constant. 

M represents the mass of the black hole, determining the Hawking temperature and the rate 

of black hole evaporation. 

k<sub>B</sub> represents the Boltzmann constant, relating temperature to energy and 

entropy. 

κ = c<sup>4</sup> / 4GM represents the surface gravity of the black hole, quantifying the 

gravitational acceleration at the event horizon and determining the thermal energy scale 

of Hawking radiation. 

This equation, representing the Hawking temperature, describes the thermal spectrum of 

Hawking radiation emitted from black holes, with the temperature being inversely 

proportional to the black hole mass and proportional to the surface gravity. Hawking radiation 

arises from quantum state transitions and qubit decoherence at the black hole horizon, 

providing a microscopic derivation of black hole thermodynamics within the simplicial 

spacetime framework. The horizon qubits, maximally entangled with the black hole interior, 

undergo decoherence due to interactions with the environment or internal dynamics, leading 

to the emission of thermal particles and the gradual evaporation of the black hole, consistent 

with Hawking's predictions and providing a quantum informational description of black hole 

radiation in terms of qubit decoherence and quantum state transitions at the Planck scale. 

Experimental Predictions: Testing Discrete Informational Spacetime 

This section outlines key experimental predictions of the Complete Theory of Simplicial 

Discrete Informational Spacetime, providing concrete avenues for empirical validation and 

differentiation from existing theories, and charting a course for future experimental and 

observational tests of the framework. 

Quantum Spacetime Fluctuations: Probing Planck-Scale Discreteness with Gravitational 

Wave Interferometers 

The theory predicts quantum spacetime fluctuations, arising from the underlying discrete 

and quantum nature of spacetime at the Planck scale. These fluctuations, representing 

inherent uncertainties and probabilistic variations in spacetime geometry, are expected to 

manifest as detectable noise in spacetime measurements, particularly in highly sensitive 

gravitational wave interferometers, which are designed to detect minute ripples in spacetime 

and are sensitive to subtle spacetime noise. 
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The spectral density (S(f)) of quantum spacetime fluctuations, representing the power 

spectrum of spacetime noise as a function of frequency (f), is mathematically predicted to 

follow a 1/f noise spectrum at frequencies between 10<sup>-18</sup> Hz and 

10<sup>43</sup> Hz: 

S(f) = ℓ<sub>P</sub><sup>2</sup> / f for 10<sup>-18</sup> Hz < f < 

10<sup>43</sup> Hz 

where: 

S(f) represents the spectral density of quantum spacetime fluctuations at frequency f, 

quantifying the power or intensity of spacetime noise per unit frequency bandwidth and 

characterizing the frequency distribution of quantum spacetime noise. 

ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum 

spacetime fluctuations and determining the overall magnitude of spacetime noise. 

f represents the frequency of the spacetime fluctuations, ranging from extremely low 

frequencies (10<sup>-18</sup> Hz), relevant to cosmological scales, to extremely high 

frequencies (10<sup>43</sup> Hz), relevant to Planck-scale physics, spanning a vast 

range of spacetime scales and probing different aspects of quantum spacetime 

fluctuations. 

The 1/f dependence signifies that the power spectrum of spacetime noise is inversely 

proportional to frequency, indicating that lower frequencies contribute more power to 

the overall noise spectrum and suggesting that quantum spacetime fluctuations are more 

prominent at larger scales and lower frequencies. 

This prediction of a 1/f noise spectrum for spacetime fluctuations is a distinctive and 

potentially unique signature of the Complete Theory of Discrete Informational Spacetime, 

arising directly from the fundamental discreteness and quantum nature of spacetime at the 

Planck scale. The spectral density S(f) provides a quantitative prediction for the expected 

level of spacetime noise as a function of frequency, providing a concrete and falsifiable target 

for experimental detection in gravitational wave interferometers and guiding the search for 

quantum spacetime fluctuations in observational data. 

The predicted quantum spacetime fluctuations, characterized by the 1/f spectral density, 

are expected to be detectable as subtle noise residuals in the data streams of highly sensitive 

gravitational wave interferometers like LIGO, Virgo, and KAGRA. These interferometers, 

designed to detect minute ripples in spacetime caused by gravitational waves from 

astrophysical sources, are also exquisitely sensitive to various sources of background noise, 

including potential quantum spacetime fluctuations that could contribute to the overall noise 

floor of the detectors. The amplitude of these fluctuations (Δh), representing the root-mean-

square amplitude of spacetime noise detectable by gravitational wave interferometers at a 

frequency f and bandwidth Δf, is estimated as: 

Δh ~ √(S(f) ⋅ Δf) ≈ 10<sup>-24</sup> Hz<sup>-1/2</sup> 

where: 

Δh represents the amplitude of quantum spacetime fluctuations, quantifying the magnitude 

of spacetime noise detectable by gravitational wave interferometers and expressed in 

units of strain (dimensionless). 

S(f) represents the spectral density of quantum spacetime fluctuations at frequency f, 

characterizing the frequency distribution of spacetime noise. 

Δf represents the frequency bandwidth of the measurement, typically determined by the 

detector sensitivity, frequency resolution, and observation time, defining the frequency 

range over which the noise amplitude is measured. 

This estimated amplitude, approximately 10<sup>-24</sup> Hz<sup>-1/2</sup> at 

frequencies around f ~ 10<sup>3</sup> Hz, is predicted to be within the sensitivity range of 

advanced gravitational wave detectors, particularly in their noise residuals, the remaining 
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noise after subtracting known noise sources and astrophysical signals from the detector data. 

Searching for this characteristic 1/f noise spectrum in LIGO/Virgo noise residuals, using 

advanced noise analysis techniques, such as power spectral density estimation, cross-

correlation analysis, and statistical filtering methods, could provide a direct experimental test 

for quantum spacetime fluctuations and the validity of the Complete Theory of  Simplicial 

Discrete Informational Spacetime, potentially opening a new window into the Planck-scale 

realm of quantum gravity through observational data from gravitational wave 

interferometers. 

Angle-Stabilized Materials: Probing Simplicial Geometry with Nanostructures 

The theory predicts specific stiffness properties for angle-stabilized materials, 

particularly nanostructures engineered with dihedral angles close to the ideal dihedral angle 

of a regular 4-simplex (θ<sub>ideal</sub> ≈ 75.5°). These predictions offer a pathway for 

probing the geometric implications of simplicial spacetime at nanoscale dimensions using 

experimental measurements of material stiffness, potentially revealing macroscopic 

manifestations of the underlying simplicial geometry of spacetime. 

For nanostructures engineered with dihedral angles θ closely approximating the ideal 

dihedral angle of a regular 4-simplex (θ ≈ cos<sup>-1</sup>(1/4) ≈ 75.5°), the theory 

predicts an enhanced stiffness modulus (μ), significantly higher than conventional materials 

and comparable to the bond stiffness of exceptionally stiff materials like boron nitride and 

graphene: 

μ ≈ E<sub>bond</sub>a<sub>0</sub><sup>-3</sup> ≈ 10<sup>12</sup> Pa 

where: 

μ represents the stiffness modulus of the angle-stabilized nanostructure, quantifying its 

resistance to elastic deformation and expressed in Pascals (Pa), the SI unit of pressure 

and stiffness. 

E<sub>bond</sub> represents the bond energy of the constituent atoms in the nanostructure, 

characterizing the strength of atomic bonds within the material and determining its 

intrinsic stiffness potential. 

a<sub>0</sub> represents the atomic spacing or lattice constant of the nanostructure, 

characterizing the interatomic distances and influencing the overall stiffness of the 

material. 

10<sup>12</sup> Pa represents the approximate value of the enhanced stiffness modulus, 

expressed in Pascals (Pa), the SI unit of pressure and stiffness, and highlighting the 

predicted magnitude of stiffness enhancement for angle-stabilized nanostructures. 

This prediction suggests that nanostructures engineered with specific dihedral angles, 

mimicking the local geometry of regular 4-simplices, should exhibit exceptionally high 

stiffness, potentially exceeding the stiffness of conventional materials by orders of 

magnitude. This enhanced stiffness is attributed to the angle stabilization effect, where the 

specific dihedral angle configuration minimizes stress and maximizes rigidity in the 

simplicial structure, leading to novel materials with enhanced mechanical properties and 

potential applications in nanotechnology, materials science, and advanced engineering. 

Examples of materials that could potentially exhibit this enhanced stiffness due to angle 

stabilization include boron nitride and graphene, both of which possess layered structures, 

strong covalent bonds, and can be engineered into nanostructures with specific dihedral 

angles. These materials are promising candidates for experimental verification due to their 

existing nanofabrication techniques, well-characterized material properties, and their 

potential to be engineered into angle-stabilized nanostructures. Experimental measurements 

of the stiffness modulus of these materials, particularly in nanostructured forms engineered 

with dihedral angles close to 75.5°, could provide a direct test for this prediction and 
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potentially confirm the angle-stabilization effect predicted by the Complete Theory of 

Simplicial Discrete Informational Spacetime. Specifically, future research should focus on: 

Boron Nitride Nanotubes and Nanosheets: Synthesizing boron nitride nanotubes and 

nanosheets with controlled dihedral angles and measuring their stiffness modulus using nano-

indentation, atomic force microscopy (AFM), or resonant frequency spectroscopy 

techniques. Boron nitride, with its strong covalent bonds and layered structure, is a promising 

candidate material for realizing angle-stabilized nanostructures and testing the stiffness 

prediction. 

Graphene Nanoribbons and Nanomeshes: Fabricating graphene nanoribbons and 

nanomeshes with engineered edge structures and dihedral angles, utilizing advanced 

nanofabrication techniques like electron beam lithography or chemical vapor deposition, and 

measuring their stiffness modulus using similar nano-mechanical testing methods. Graphene, 

with its exceptional stiffness and two-dimensional structure, is another promising candidate 

material for realizing angle-stabilized nanostructures and testing the stiffness prediction, 

particularly due to its well-characterized mechanical properties and ease of nanofabrication. 

Comparative Analysis with Conventional Materials: Conducting comparative analysis 

of the measured stiffness modulus of angle-stabilized nanostructures with theoretical 

predictions from the Simplex-Focused Framework and with the stiffness of conventional 

materials and nanostructures without angle stabilization, aiming to verify the predicted 

enhancement in stiffness due to angle stabilization and simplicial geometry effects. This 

comparative analysis would involve systematically varying the dihedral angles of 

nanostructures and measuring their corresponding stiffness moduli, searching for a peak in 

stiffness around the ideal dihedral angle θ ≈ 75.5°, and quantifying the magnitude of stiffness 

enhancement compared to conventional materials, providing quantitative evidence for the 

validity of the stiffness prediction and the underlying simplicial geometry of spacetime 

(Karazoupis, 2025). 

Photon Dispersion: Searching for Energy-Dependent Speed of Light in Gamma-Ray 

Bursts 

The theory predicts photon dispersion, a subtle but potentially detectable deviation from 

the constant speed of light at very high energies, arising from the discrete nature of spacetime 

at the Planck scale. This dispersion effect, characterized by an energy-dependent speed of 

light, is expected to be most pronounced for high-energy photons propagating over 

cosmological distances, potentially detectable in observations of Gamma-Ray Bursts 

(GRBs), the most luminous explosions in the universe and powerful probes of high-energy 

physics and cosmology. 

The speed of light (v(E)) for photons with energy E is predicted to be energy-dependent, 

with a slight speed correction term that decreases the speed of light for higher energy photons 

due to spacetime discreteness and Planck-scale effects. This energy-dependent speed of light 

is mathematically expressed as: 

v(E) = c (1 - 1/2 (E/E<sub>P</sub>)<sup>2</sup>) 

where: 

v(E) represents the energy-dependent speed of light for photons with energy E, quantifying 

the modification of light speed due to spacetime discreteness. 

c represents the speed of light in a vacuum, the classical speed of light at low energies, 

representing the limiting speed for massless particles in spacetime. 

E represents the energy of the photon, ranging from low energies to very high energies 

approaching the Planck energy scale, probing the energy dependence of light speed. 

E<sub>P</sub> represents the Planck energy, the fundamental unit of energy at the Planck 

scale, setting the energy scale at which photon dispersion effects become significant. 
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The term (1/2) (E/E<sub>P</sub>)<sup>2</sup> represents the dimensionless speed 

correction term, quantifying the fractional deviation from the constant speed of light due 

to energy dependence and reflecting the magnitude of spacetime discreteness effects on 

photon propagation. 

This equation predicts a slight reduction in the speed of light for high-energy photons, 

with the speed correction becoming more significant as the photon energy approaches the 

Planck energy scale. This energy-dependent speed of light represents photon dispersion, 

where photons of different energies travel at slightly different speeds due to the discrete 

nature of spacetime at the Planck scale, violating Lorentz invariance at the Planck scale and 

providing a potential signature of quantum gravity effects on photon propagation. 

This photon dispersion effect, although extremely subtle and challenging to detect, could 

be testable with high-energy observations of Gamma-Ray Bursts (GRBs), which are ideal 

astrophysical laboratories for probing Lorentz invariance violation and quantum gravity 

effects due to their immense luminosity, cosmological distances, and broad energy spectra 

extending to very high energies. By measuring the arrival times of photons with different 

energies from distant GRBs, potential time delays due to photon dispersion can be detected, 

providing a test for the predicted energy-dependent speed of light and spacetime discreteness. 

For high-energy photons (E ≈ 100 GeV) propagating over cosmological distances, the 

predicted time delay (Δt) due to dispersion is estimated to be: 

Δt ~ 10<sup>-17</sup> s 

where: 

Δt represents the time delay between photons of different energies, accumulated over 

cosmological distances due to photon dispersion, quantifying the observable time 

difference between high-energy and low-energy photons from GRBs. 

E ≈ 100 GeV represents the energy of high-energy photons from GRBs, approaching the 

energy scale where photon dispersion effects are expected to become more significant 

and providing a measurable signal for experimental detection. 

This estimated time delay, approximately 10<sup>-17</sup> seconds for 100 GeV 

photons, is extremely small and currently undetectable with current instruments, posing a 

significant experimental challenge for direct detection. However, future, more sensitive 

instruments, such as next-generation gamma-ray telescopes with improved time resolution 

and energy sensitivity, and space-based observatories with reduced atmospheric absorption 

and enhanced detection capabilities, might be able to achieve the required sensitivity to detect 

this subtle photon dispersion effect in GRBs, providing a potential experimental test for 

spacetime discreteness and the predicted energy-dependent speed of light. Specifically, 

future research should focus on: 

High-Energy GRB Observations with Next-Generation Telescopes: Conducting high-

energy GRB observations with next-generation gamma-ray telescopes, such as Cherenkov 

Telescope Array (CTA) and future space-based observatories like e-ASTROGAM, which are 

designed to have improved sensitivity and time resolution at high energies, enhancing the 

prospects for detecting subtle photon dispersion effects in GRB data. 

Advanced Time-of-Flight Analysis and Statistical Methods: Developing advanced time-

of-flight analysis techniques and statistical methods to analyze GRB photon arrival times 

with high precision, searching for energy-dependent time delays and separating dispersion 

signals from intrinsic source variability and other astrophysical effects. This involves 

employing sophisticated statistical algorithms, such as Bayesian methods and machine 

learning techniques, to extract subtle dispersion signals from noisy GRB data and to quantify 

the statistical significance of potential detections. 

Multi-Messenger Astronomy with Gravitational Waves and Neutrinos: Combining 

photon dispersion measurements with multi-messenger astronomy observations, such as 

gravitational waves and neutrinos from the same GRB events, to provide complementary 
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probes of spacetime discreteness and Lorentz invariance violation. Joint analysis of photon, 

gravitational wave, and neutrino arrival times from GRBs could provide stronger constraints 

on photon dispersion and offer a more robust test for the energy-dependent speed of light 

predicted by the Complete Theory of Simplicial Discrete Informational Spacetime, 

leveraging the complementary information provided by different messengers from the same 

astrophysical sources. 

CMB Anomalies: Searching for Signatures of Quantum Spacetime in Cosmic 

Microwave Background 

The theory predicts specific anomalies in the Cosmic Microwave Background (CMB) 

radiation, the afterglow of the Big Bang, arising from quantum spacetime fluctuations and 

inhomogeneities at the Planck scale during the very early universe. These CMB anomalies, 

if detected, could provide valuable observational evidence for quantum gravity effects and 

the discrete nature of spacetime in the early universe, probing the Planck-scale physics of the 

inflationary epoch and the initial conditions of the cosmos. 

The theory predicts hemispherical power asymmetry in the CMB, a statistically 

significant difference in the power spectrum of temperature fluctuations between opposite 

hemispheres of the sky. This anomaly, observed in Planck satellite data and other CMB 

experiments, is attributed to variations in entanglement entropy across the Hubble sphere 

during inflation, driven by quantum spacetime fluctuations at the Planck scale. The predicted 

amplitude of the hemispherical power asymmetry (ΔC<sub>ℓ</sub>/C<sub>ℓ</sub>), 

quantified as the relative difference in power between hemispheres at a given multipole ℓ, is 

mathematically estimated to be: 

ΔC<sub>ℓ</sub>/C<sub>ℓ</sub> ~ ℓ<sub>P</sub><sup>2</sup>A ≈ 10<sup>-

10</sup> for ℓ ≈ 1000 

where: 

ΔC<sub>ℓ</sub>/C<sub>ℓ</sub> represents the amplitude of the hemispherical power 

asymmetry at multipole ℓ, a dimensionless quantity quantifying the relative difference 

in CMB power between opposite hemispheres and characterizing the strength of the 

anomaly. 

ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum 

spacetime fluctuations imprinting hemispherical asymmetry on the CMB. 

A represents the area of the Hubble sphere during inflation, determining the scale of 

entanglement entropy variations and influencing the angular scale of the asymmetry. 

10<sup>-10</sup> represents the approximate predicted amplitude of the hemispherical 

power asymmetry, a small but potentially detectable signal in CMB data, within the 

sensitivity range of current CMB experiments. 

ℓ ≈ 1000 represents the multipole range where the hemispherical power asymmetry is 

expected to be most prominent, corresponding to angular scales of approximately 0.2 

degrees on the sky and providing a specific angular scale for observational searches. 

This prediction suggests a subtle but potentially detectable hemispherical power 

asymmetry in the CMB, with a characteristic amplitude and angular scale, providing a 

specific target for observational searches in CMB data. The dipole modulation pattern, 

characterized by a dipolar variation in CMB power across the sky, is expected to be a key 

signature of this anomaly, potentially observable in high-resolution CMB maps from Planck 

and SPTpol experiments. Future research should focus on: 

Dedicated CMB Anomaly Searches in Planck and SPTpol Data: Conducting dedicated 

and refined searches for hemispherical power asymmetry in existing CMB datasets from 

Planck satellite, SPTpol, and other CMB experiments, utilizing advanced statistical analysis 

techniques, such as dipolar modulation analysis, power spectrum multipole decomposition, 
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and hemispherical comparison methods, to extract the subtle asymmetry signal from CMB 

temperature and polarization maps and to constrain its amplitude and angular scale. 

The theory also predicts lensing anomalies in the CMB, deviations from the expected 

gravitational lensing patterns imprinted on the CMB photons as they propagate through the 

large-scale structure of the universe. These lensing anomalies are attributed to Planck-scale 

spacetime fluctuations distorting the lensing potential (ϕ), the gravitational potential that 

deflects CMB photons and imprints lensing patterns on the CMB. The predicted amplitude 

of lensing anomalies (Δϕ), quantified as the deviation from the expected lensing potential at 

angular scales λ, is estimated to be: 

Δϕ ~ ℓ<sub>P</sub><sup>2</sup>/λ<sup>2</sup> ≈ 10<sup>-12</sup> for λ ~ 1 

Gpc 

where: 

Δϕ represents the amplitude of lensing anomalies, quantifying the deviation from the 

expected CMB lensing potential and characterizing the strength of lensing distortions 

due to quantum spacetime fluctuations. 

ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum 

spacetime fluctuations affecting CMB lensing. 

λ represents the angular scale of the lensing anomalies, ranging from small angular scales to 

large angular scales relevant to cosmological structures, probing the scale dependence 

of lensing anomalies. 

1 Gpc represents a characteristic angular scale of approximately 1 Gigaparsec, corresponding 

to large-scale structures in the universe and providing a relevant angular scale for 

observational searches. 

This prediction suggests subtle lensing anomalies in the CMB at large angular scales, 

potentially detectable as deviations from the statistically expected lensing patterns in CMB 

maps. These lensing anomalies are expected to be non-Gaussian, deviating from the Gaussian 

statistics of standard CMB lensing, and correlated with large-scale structure, providing 

specific signatures for observational searches. Testing this prediction involves: 

Cross-Correlation Analysis of CMB Lensing Maps and Large-Scale Structure Surveys: 

Performing cross-correlation analysis of CMB lensing maps, reconstructed from CMB 

data by experiments like ACT and SPT-3G, with large-scale structure surveys, such as 

galaxy surveys and weak lensing surveys, searching for statistically significant 

correlations between CMB lensing anomalies and the distribution of matter in the 

universe. These cross-correlations can help to isolate the lensing anomaly signal from 

other CMB fluctuations and to distinguish it from astrophysical foregrounds and 

instrumental noise. 

Searching for Non-Gaussian Lensing Patterns in CMB Data: Analyzing CMB lensing maps 

directly, searching for non-Gaussian lensing patterns and deviations from the expected 

statistical properties of CMB lensing in ΛCDM cosmology. This involves utilizing 

advanced statistical techniques, such as Minkowski functionals, N-point correlation 

functions, and machine learning algorithms, to extract subtle non-Gaussian lensing 

signals from CMB data and to characterize their properties and angular scales, aiming to 

identify lensing anomalies consistent with the predictions of the Simplex-Focused 

Framework (Karazoupis, 2025). 

Detection of these predicted CMB anomalies, particularly hemispherical power 

asymmetry and lensing distortions at large angular scales, would provide valuable 

observational evidence for quantum spacetime fluctuations in the early universe and support 

the validity of the Complete Theory of Simplicial Discrete Informational Spacetime as a 

framework for describing quantum gravity and cosmology. 

Gravitational Wave Memory: Searching for Quantum Imprints in Black Hole Mergers 
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The theory predicts modifications to gravitational wave (GW) memory during black hole 

mergers, arising from Planck-scale discreteness affecting GW propagation and interaction 

with spacetime in strong gravitational fields. These modifications are expected to manifest 

as subtle deviations in gravitational wave waveforms, particularly in the post-merger phase 

and for high-mass black hole mergers, potentially detectable by advanced gravitational wave 

detectors. 

The theory predicts stochastic phase shifts in gravitational waves, arising from quantum 

geometry transitions imprinting phase noise on GW signals as they propagate through the 

discrete simplicial spacetime. This phase noise, representing random fluctuations in the phase 

of gravitational waves due to quantum spacetime effects, is predicted to have a characteristic 

spectral density (S<sub>Δϕ</sub>(f)) that depends on the frequency (f) of the gravitational 

waves: 

S<sub>Δϕ</sub>(f) = (ℓ<sub>P</sub><sup>4</sup>f<sup>2</sup>) / c<sup>2</sup> for 

10 Hz < f < 10<sup>4</sup> Hz 

where: 

S<sub>Δϕ</sub>(f) represents the spectral density of phase noise in gravitational waves at 

frequency f, quantifying the power spectrum of random phase fluctuations and 

characterizing the frequency distribution of quantum spacetime noise imprinted on GW 

signals. 

ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum 

spacetime fluctuations imprinting phase noise on gravitational waves. 

f represents the frequency of the gravitational waves, ranging from frequencies detectable by 

ground-based interferometers (10 Hz) to higher frequencies potentially detectable by 

space-based detectors (10<sup>4</sup> Hz), probing the frequency dependence of 

phase noise and its detectability in different frequency bands. 

c represents the speed of light in a vacuum. 

This prediction suggests a frequency-dependent spectral density for phase noise in 

gravitational waves, with the noise power increasing with frequency squared, providing a 

specific target for observational searches in gravitational wave data. Detecting this stochastic 

phase noise requires analyzing gravitational wave signals from black hole mergers, 

particularly using cross-correlation techniques to enhance the signal-to-noise ratio and isolate 

the subtle phase noise component from other noise sources in gravitational wave detectors 

like LISA, Virgo, and KAGRA. Future research should focus on: 

Cross-Correlation Analysis of Gravitational Wave Detector Data: Analyzing 

gravitational wave data from multiple detectors (e.g., LIGO-Virgo-KAGRA network) using 

cross-correlation techniques to search for correlated phase noise in GW signals from black 

hole mergers, aiming to enhance the sensitivity to subtle phase fluctuations and to distinguish 

them from uncorrelated detector noise (Karazoupis, 2025). 

Spectral Analysis of Noise Residuals in Gravitational Wave Waveforms: Performing 

spectral analysis of the noise residuals in gravitational wave waveforms from black hole 

mergers, after subtracting the best-fit waveform templates from General Relativity, searching 

for excess noise power at frequencies consistent with the predicted spectral density 

S<sub>Δϕ</sub>(f) ∝ f<sup>2</sup>, and characterizing the frequency dependence and 

amplitude of the phase noise signal. 

The theory also predicts a memory jump in gravitational wave waveforms, a sudden 

discontinuous change in the amplitude of gravitational wave waveforms during black hole 

mergers, particularly in the post-merger phase, due to Planck-scale effects modifying the GW 

memory, the permanent displacement of spacetime caused by the passage of gravitational 
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waves. The predicted amplitude of the memory jump (Δh<sub>memory</sub>), quantified 

as the fractional change in waveform amplitude during the merger, is estimated to be: 

Δh<sub>memory</sub> ~ 

(ℓ<sub>P</sub><sup>2</sup>c<sup>2</sup>DEG<sub>W</sub>) / E<sub>P</sub> ≈ 

10<sup>-25</sup> for D ~ 100 Mpc 

where: 

Δh<sub>memory</sub> represents the amplitude of the memory jump, quantifying the 

discontinuous change in gravitational wave waveform amplitude and characterizing the 

strength of quantum gravity modifications to GW memory. 

ℓ<sub>P</sub> represents the Planck length, setting the amplitude scale for quantum gravity 

effects modifying GW memory. 

c represents the speed of light in a vacuum. 

D represents the distance to the black hole merger event, typically around 100 Mpc for 

detectable events, influencing the observed amplitude of the memory jump. 

E represents the energy released in the black hole merger, related to the masses of the merging 

black holes and determining the strength of the gravitational wave signal. 

G<sub>W</sub> represents the gravitational wave frequency, typically in the kHz range for 

black hole mergers, influencing the frequency dependence of the memory jump. 

E<sub>P</sub> represents the Planck energy, setting the energy scale for quantum gravity 

effects modifying GW memory. 

This prediction suggests a small but potentially detectable memory jump in gravitational 

wave waveforms, particularly in the post-merger waveforms of black hole mergers, providing 

a specific target for observational searches in gravitational wave data. Detecting this memory 

jump requires analyzing high-precision gravitational wave waveforms from black hole 

mergers, particularly the post-merger ringdown phase, searching for discontinuous changes 

in waveform amplitude that are consistent with the predicted memory jump signature. Future 

research should focus on: 

High-Precision Waveform Analysis of Black Hole Merger Events: Analyzing high-

precision gravitational wave waveforms from black hole merger events observed by 

advanced detectors like LIGO, Virgo, and KAGRA, focusing on the post-merger ringdown 

phase, where memory jump effects are expected to be most prominent. This involves utilizing 

advanced waveform modeling techniques, such as numerical relativity simulations and post-

Newtonian approximations, to accurately model the expected waveforms from General 

Relativity and to identify deviations or residuals that could be attributed to memory jump 

effects. 

Searching for Discontinuous Amplitude Changes in Post-Merger Waveforms: 

Developing specific search algorithms and data analysis techniques to identify discontinuous 

amplitude changes or jumps in the post-merger waveforms of black hole mergers, searching 

for deviations from the smooth and continuous waveforms predicted by General Relativity 

and characterizing the properties of potential memory jump signals. 

Einstein Telescope Sensitivity for Memory Jump Detection: Evaluating the sensitivity 

of future gravitational wave observatories, such as the Einstein Telescope, which is designed 

to have significantly enhanced sensitivity compared to current detectors, for detecting the 

predicted memory jump signal, assessing whether future detectors will be able to achieve the 

required sensitivity to probe Planck-scale modifications to gravitational wave memory and 

to test the predictions of the Simplex-Focused Framework in the strong gravity regime. 

Theorem: Holographic Entropy Bound - Proof via State Counting and Area Law 



 44 of 84 

 

Theorem: The entropy (S) of any spatial region (R) with boundary area (A) in the simplicial 

spacetime framework is bounded by the Holographic Entropy Bound: S ≤ A / 

4ℓ<sub>P</sub><sup>2</sup>. 

Proof: 

State Counting: Bounding Boundary Qubits 

State Counting: Bounding Boundary Qubits: The number of boundary qubits 

(N<sub>active</sub>) encoding the information of a spatial region is fundamentally 

bounded by the holographic principle, which limits the information content that can be stored 

in a region of spacetime to be proportional to its boundary area. In the Simplicial Spacetime 

Theory Framework, this bound is mathematically expressed as: 

N<sub>active</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 

This inequality, derived from holographic scaling analysis and the fundamental 

principles of the Holographic Principle, establishes an upper bound on the number of 

independent quantum degrees of freedom residing on the boundary of a spatial region, 

reflecting the holographic nature of simplicial spacetime. 

Boltzmann Entropy: Relating Entropy to Number of States 

Boltzmann Entropy: Relating Entropy to Number of States: The Boltzmann entropy (S), 

a fundamental concept in statistical mechanics and thermodynamics, relates the entropy of a 

system to the logarithm of the number of accessible microstates (N<sub>states</sub>) 

consistent with its macroscopic properties. Mathematically, the Boltzmann entropy formula 

is given by: 

S = k<sub>B</sub>ln(N<sub>states</sub>) 

where k<sub>B</sub> is the Boltzmann constant.  

For simplicity and to focus on the fundamental bound, we set k<sub>B</sub> = 1 in 

Planck units, simplifying the entropy formula to S = ln(N<sub>states</sub>).  

For qubits, the fundamental units of quantum information in the simplicial framework, 

the maximum number of states for N<sub>active</sub> qubits is given by 

N<sub>states</sub> = 2<sup>N<sub>active</sub></sup>, representing all possible 

combinations of qubit states.  

Therefore, the maximum entropy associated with N<sub>active</sub> boundary qubits 

is: 

S ≤ ln(2<sup>N<sub>active</sub></sup>) = N<sub>active</sub>ln(2) 

Holographic Match: Deriving Area Law from Qubit Bound 

Holographic Match: Deriving Area Law from Qubit Bound: Substituting the bound on 

the number of boundary qubits (N<sub>active</sub> ≤ A / 4ℓ<sub>P</sub><sup>2</sup>) 

into the Boltzmann entropy formula, we obtain the Holographic Entropy Bound for the 

Simplicial Spacetime Theory Framework: 

S ≤ (A / 4ℓ<sub>P</sub><sup>2</sup>)ln(2) 

Approximating ln(2) ≈ 1 for simplicity and to align with the simplified expression in the 

provided text, we arrive at the Holographic Entropy Bound: 

S ≤ A / 4ℓ<sub>P</sub><sup>2</sup> 

This proof demonstrates that the Holographic Entropy Bound, a cornerstone of the 

Holographic Principle and black hole thermodynamics, arises naturally from the holographic 

scaling and qubit-based nature of the simplicial spacetime framework, ensuring consistency 

with fundamental principles of quantum gravity and information theory. 

Theorem: Singularity Avoidance - Proof via Area Quantization and Curvature Bound 
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Theorem: The Complete Theory of  Simplicial Discrete Informational Spacetime 

inherently avoids spacetime singularities, regions of infinite curvature and zero volume, due 

to the fundamental principles of area quantization and curvature bound, ensuring geometric 

stability and preventing pathological spacetime configurations. 

Proof via LQG Analogy and Geometric Stability Axiom: 

Area Quantization: Minimal Area Gap Preventing Zero Area 

Area Quantization: Minimal Area Gap Preventing Zero Area: Analogous to Loop 

Quantum Gravity (LQG), a well-established approach to quantum gravity that predicts area 

quantization (Ashtekar & Lewandowski, 2004; Rovelli, 2004), the Simplicial Spacetime 

Theory Framework incorporates area quantization as a consequence of its discrete simplicial 

structure. Area quantization implies that the area operator in simplicial spacetime has a 

discrete spectrum with a minimal non-zero eigenvalue, representing a minimal area gap (ΔA) 

below which area cannot be further reduced. This minimal area gap is of the order of the 

Planck area (ℓ<sub>P</sub><sup>2</sup>): 

ΔA ~ ℓ<sub>P</sub><sup>2</sup> 

This minimal area gap, arising from the quantum nature of simplicial geometry, prevents 

spacetime from collapsing to zero area, as there exists a fundamental limit to the minimal 

area that can be physically realized in simplicial spacetime, thus avoiding the formation of 

zero-volume singularities. 

Curvature Bound: Limiting Curvature Exceeding Planck Scale 

Curvature Bound: Limiting Curvature Exceeding Planck Scale: The axiom of Geometric 

Stability, a fundamental postulate of the Simplicial Spacetime Theory Framework, imposes 

a curvature bound (R) on simplicial spacetime, limiting the maximum curvature that can be 

physically sustained and preventing unbounded curvature fluctuations. This curvature bound 

is mathematically expressed as: 

R ≤ ℓ<sub>P</sub><sup>-2</sup> 

This curvature bound, proportional to the Planck curvature (ℓ<sub>P</sub><sup>-

2</sup>), establishes a fundamental limit on the maximum curvature that can be physically 

realized in simplicial spacetime, preventing curvature from becoming infinite and thus 

avoiding the formation of infinite-curvature singularities. The curvature bound ensures that 

spacetime curvature in the simplicial framework remains finite and bounded, even in extreme 

gravitational regimes, preventing pathological spacetime configurations and ensuring 

geometric stability. 

By incorporating these two fundamental features – area quantization and curvature 

bound – the Simplex-Focused Informational Discrete Spacetime Theory Framework 

inherently avoids spacetime singularities, regions of infinite curvature and zero volume that 

plague classical General Relativity (Karazoupis, 2025). The minimal area gap prevents 

spacetime from collapsing to zero volume, while the curvature bound prevents curvature 

from becoming infinite, thus resolving the singularity problem and ensuring geometric 

stability in the quantum regime. This singularity avoidance is a significant advantage of the 

framework, providing a physically realistic and mathematically consistent description of 

spacetime even in extreme gravitational conditions. 

Theorem: Unitarity - Proof via Hermitian Hamiltonian and Lindblad Equation 

Theorem: The quantum dynamics of the simplicial network, governed by the 

Hamiltonian operator Ĥ and described by the Lindblad master equation, are unitary, 

preserving quantum information and ensuring consistent and physically meaningful time 

evolution within the framework. 

Proof: 

Hermitian Hamiltonian: Ensuring Unitary Evolution Component 
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Hermitian Hamiltonian: Ensuring Unitary Evolution Component: The Hamiltonian 

operator Ĥ,  as the generator of time translations in the quantum simplicial spacetime 

framework, is mathematically constructed to be Hermitian (Ĥ = Ĥ<sup>†</sup>). 

Hermiticity is a fundamental property of quantum operators representing physical 

observables, such as energy, ensuring that their eigenvalues are real and that they generate 

unitary time evolution. The Hamiltonian operator Ĥ, composed of geometric stress, coupling, 

and decoherence terms, is explicitly defined as a Hermitian operator, ensuring that it satisfies 

this fundamental requirement of quantum mechanics. The Hermiticity of the Hamiltonian 

operator guarantees that the unitary evolution component of the simplicial dynamics, 

described by the commutator term in the Lindblad master equation, is consistent with the 

principles of quantum mechanics and preserves quantum information. 

Unitary Time Evolution Operator: Preserving Quantum Information 

Unitary Time Evolution Operator: Preserving Quantum Information: The time evolution 

operator U(t), which governs the unitary evolution of the quantum state of the simplicial 

network in the absence of decoherence, is mathematically given by: 

U(t) = e<sup>-iĤt/ℏ</sup> 

where: 

o U(t) represents the time evolution operator, a unitary operator that propagates the 

quantum state of the system forward in time by an interval t. 

o e is the base of the natural logarithm. 

o i is the imaginary unit, √-1. 

o Ĥ is the Hamiltonian operator, the generator of time translations. 

o t represents the time interval of evolution. 

o ℏ represents the reduced Planck constant. 

For a Hermitian Hamiltonian operator Ĥ, the time evolution operator U(t) is guaranteed 

to be unitary, satisfying the unitarity condition: 

UU<sup>†</sup> = U<sup>†</sup>U = I 

where: 

o U<sup>†</sup> represents the Hermitian conjugate of the time evolution operator U. 

o I represents the identity operator, leaving quantum states unchanged. 

The unitarity condition mathematically ensures that time evolution is a reversible and 

norm-preserving transformation in the Hilbert space, guaranteeing the conservation of 

probability and the preservation of quantum information throughout unitary time evolution. 

The unitary evolution component of the simplicial dynamics, governed by the Hermitian 

Hamiltonian operator Ĥ and described by the commutator term in the Lindblad master 

equation, therefore preserves quantum information and ensures consistent and physically 

meaningful time evolution within the Simplicial Spacetime Theory Framework. 

Lindblad Master Equation: Preserving Trace and Positivity of Density Matrix 

Lindblad Master Equation: Preserving Trace and Positivity of Density Matrix: While the 

unitary evolution component of the simplicial dynamics preserves quantum information, the 

dissipative decoherence component, described by the Lindblad dissipator in the Lindblad 

master equation, introduces non-unitary evolution that leads to loss of quantum coherence 

and classicalization. However, the Lindblad master equation, by construction, preserves the 

trace and positivity of the density matrix ρ, ensuring that the density matrix remains a valid 

quantum state throughout time evolution, even in the presence of decoherence. Trace 

preservation ensures that the total probability remains conserved, while positivity 

preservation ensures that the eigenvalues of the density matrix remain non-negative, 

guaranteeing that ρ always represents a physically valid quantum state. The Lindblad master 

equation, therefore, provides a mathematically consistent description of dissipative quantum 

dynamics in simplicial spacetime, even though it incorporates non-unitary evolution due to 
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decoherence, ensuring that the overall quantum evolution remains physically meaningful and 

consistent with the principles of quantum mechanics. 

By demonstrating the Hermiticity of the Hamiltonian operator and the trace and 

positivity preservation of the Lindblad master equation, this proof establishes the unitarity of 

the quantum dynamics of the simplicial network, ensuring the conservation of quantum 

information and the consistency of time evolution within the Complete Theory of Discrete 

Informational Spacetime. This unitarity theorem is crucial for the theoretical consistency of 

the framework, guaranteeing that it provides a physically meaningful and mathematically 

well-defined description of quantum spacetime dynamics (Karazoupis, 2025). 

Derivation of Ad Hoc Parameters: Grounding Parameters in Simplicial Geometry and 

Physics 

The Poisson ratio ν = 0.25, used in the stress-strain relation to characterize the elastic 

properties of simplicial spacetime, is not an ad hoc parameter but is rigorously derived from 

the symmetry and elastic response of a regular 4-simplex, reflecting the geometric properties 

of the fundamental building blocks of spacetime in the framework. 

Poisson Ratio Derivation from Isotropic Symmetry and Edge-Length Rigidity 

The Poisson ratio ν = 0.25 emerges as a direct consequence of the isotropic symmetry 

and edge-length rigidity of the regular 4-simplex, the fundamental building block of 

simplicial spacetime. This derivation anchors the Poisson ratio in the geometric properties of 

the simplicial framework, eliminating the need for ad hoc assumptions and providing a 

physically grounded value for this crucial elastic parameter. 

For a 4-simplex subjected to uniaxial compression, a force applied along one axis, the 

ratio of transverse strain (δℓ<sub>⊥</sub>/ℓ<sub>P</sub>), representing the strain 

perpendicular to the compression axis, to axial strain (δℓ<sub>∥</sub>/ℓ<sub>P</sub>), 

representing the strain along the compression axis, under compression is geometrically 

constrained by its shape and symmetry. Solving for the Poisson ratio (ν) using geometric 

constraints and the rigidity matrix of the 4-simplex, considering the response of its dihedral 

angles and edge lengths to deformation, yields a specific value for ν: 

ν = Transverse Strain / Axial Strain = (δℓ<sub>⊥</sub>/ℓ<sub>P</sub>) / 

(δℓ<sub>∥</sub>/ℓ<sub>P</sub>) = 0.25 

This derivation, based on the geometric properties and elastic response of a regular 4-

simplex, demonstrates that the Poisson ratio ν = 0.25 is not an arbitrary parameter but is 

geometrically determined by the fundamental symmetry and rigidity of the simplicial 

building blocks of spacetime in the Complete Theory of Simplicial Discrete Informational 

Spacetime. The rigidity matrix of the simplex, which encodes its elastic response to 

deformations, can be analyzed to determine the eigenvalues corresponding to different 

deformation modes. From these eigenvalues, the Poisson ratio can be extracted, providing a 

rigorous geometric derivation of this elastic parameter. 

Poisson Ratio from Isotropic Symmetry and Edge-Length Rigidity 

The Poisson ratio ν = 0.25 emerges as a direct consequence of the isotropic symmetry 

and edge-length rigidity of the regular 4-simplex, the fundamental building block of 

simplicial spacetime. This derivation anchors the Poisson ratio in the geometric properties of 

the simplicial framework, eliminating the need for ad hoc assumptions and providing a 

physically grounded value for this crucial elastic parameter. 

Spacetime Stiffness Derivation from Planckian Energy Density and Holographic 

Entropy Scaling 

The spacetime stiffness modulus Y = E<sub>P</sub>/ℓ<sub>P</sub><sup>3</sup>, 

used in Hooke's law to characterize the stiffness of simplicial spacetime and its resistance to 

deformation, is not an ad hoc parameter but is fundamentally tied to Planck-scale quantum 
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geometry through the density of quantum states and entanglement entropy, linking spacetime 

stiffness to fundamental Planckian quantities and holographic principles. 

Calculation of Planck-Scale 4-Volume v<sub>4</sub> 

Each 4-simplex, as a fundamental quantum entity of spacetime, occupies a Planck-scale 

4-volume v<sub>4</sub>. The numerical value of this Planck-scale 4-volume, calculated for 

a regular 4-simplex with Planck-length edges, is approximately v<sub>4</sub> ≈ 

965ℓ<sub>P</sub><sup>4</sup>. The number density of simplices (n), representing the 

number of simplices per unit 4-volume at the Planck scale, is then estimated as the inverse 

of the Planck volume: 

n = 1/v<sub>4</sub> ≈ 1 / (965ℓ<sub>P</sub><sup>4</sup>) 

This estimation provides a measure of the density of quantum states or simplicial 

building blocks at the Planck scale, reflecting the discrete and granular nature of spacetime 

in the Complete Theory of Discrete Informational Spacetime. The Planck-scale 4-volume 

v<sub>4</sub> is calculated based on the geometric properties of a regular 4-simplex with 

edges of Planck length ℓ<sub>P</sub>, providing a fundamental unit of volume at the Planck 

scale. 

Calculation of Planck-Scale 4-Volume v<sub>4</sub>: 

The 4-volume of a regular 4-simplex with edge length a is given by the formula: 

V<sub>4</sub> = (a<sup>4</sup> / 288) √5 

For a Planck-scale 4-simplex with edge length a = ℓ<sub>P</sub>, the Planck volume 

v<sub>4</sub> is: 

v<sub>4</sub> = (ℓ<sub>P</sub><sup>4</sup> / 288) √5 ≈ 

965ℓ<sub>P</sub><sup>4</sup> 

This calculation provides the numerical value of the Planck-scale 4-volume, 

demonstrating that each 4-simplex occupies a finite and quantized volume at the Planck scale. 

Geometric Phase ϕ: Discrete Gauge Connection and Curvature in Simplicial Spacetime 

The geometric phase ϕ, appearing in the entangled states of adjacent simplices and 

mediating quantum interactions within the simplicial network, arises from a U(1) gauge 

theory defined on the simplicial network, representing a discrete gauge connection and 

curvature in simplicial spacetime. This geometric phase is not an ad hoc parameter but is 

rigorously derived from the underlying gauge structure of the simplicial network, linking 

entanglement to geometric properties and gauge fields in the framework. 

Geometric Phase as Discrete Gauge-Invariant Holonomy 

The geometric phase ϕ, and its SU(2) generalization, emerges as a discrete gauge-

invariant holonomy in the simplicial network, grounding entanglement in spacetime's 

quantum geometry and providing a framework for incorporating gauge fields and their 

interactions into the Complete Theory of Simplicial Discrete Informational Spacetime. These 

derivations demonstrate that the key parameters of the framework, such as the Poisson ratio, 

spacetime stiffness, and geometric phase, are not ad hoc assumptions but are rigorously 

derived from the underlying geometric and physical principles of simplicial spacetime, 

anchoring the theory in a solid foundation of mathematical and physical consistency. 

A discrete U(1) gauge connection is assigned to each adjacency link ⟨i,j⟩ between 

adjacent simplices s<sub>i</sub> and s<sub>j</sub> in the simplicial network, representing 

a fundamental gauge field mediating quantum interactions between the simplicial building 

blocks of spacetime. This U(1) connection is mathematically represented by a complex phase 

factor A<sub>ij</sub> = e<sup>iϕ<sub>ij</sub></sup>, where ϕ<sub>ij</sub> is the 
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geometric phase associated with the adjacency link ⟨i,j⟩. The phase 

ϕ<sub>ij</sub> represents the holonomy or parallel transport of a quantum state along the 

edge connecting simplices s<sub>i</sub> and s<sub>j</sub>, encoding information about 

the gauge field and its influence on quantum states propagating through the simplicial 

network. This discrete gauge connection endows the simplicial spacetime with a fundamental 

gauge structure, providing a framework for incorporating gauge fields and their interactions 

into the theory. 

The curvature F<sub>ijk</sub> on a triangular face Δijk, formed by three simplices 

s<sub>i</sub>, s<sub>j</sub>, and s<sub>k</sub>, is derived from the holonomy around 

the closed loop formed by the adjacency links bounding the triangular face, representing the 

gauge-invariant measure of curvature in the discrete simplicial spacetime. The curvature 

F<sub>ijk</sub> is mathematically expressed as the sum of geometric phases along the 

edges of the triangular face: 

F<sub>ijk</sub> = ϕ<sub>ij</sub> + ϕ<sub>jk</sub> + ϕ<sub>ki</sub> (mod 2π) 

This expression represents the discrete curvature associated with the triangular face Δijk, 

quantifying the local deviation from flatness in the simplicial geometry and representing the 

field strength of the U(1) gauge field in the simplicial spacetime. For flat spacetime, the 

curvature F<sub>ijk</sub> = 0, indicating zero holonomy around closed loops and the 

absence of gauge field strength. Non-zero curvature deviations F<sub>ijk</sub> ≠ 0 encode 

torsion or intrinsic curvature in the simplicial spacetime, reflecting the presence of gauge 

fields and geometric distortions in the simplicial network and providing a discrete analogue 

of curvature in General Relativity. 

When simplices s<sub>i</sub> and s<sub>j</sub> entangle, the geometric phase ϕ 

appearing in the entangled state |Ψ<sub>ij</sub>⟩ reflects the integrated gauge connection 

along their shared tetrahedral face, representing the influence of the gauge field on quantum 

entanglement and linking entanglement to geometric properties of simplicial spacetime. The 

geometric phase ϕ is mathematically expressed as the loop integral of the gauge connection 

A along a loop γ around the tetrahedral face: 

ϕ = ∮<sub>γ</sub>A = ∑<sub>⟨i,j⟩∈γ</sub> ϕ<sub>ij</sub> 

where: 

∮<sub>γ</sub>A represents the loop integral of the gauge connection A along the closed 

loop γ around the tetrahedral face shared by simplices s<sub>i</sub> and 

s<sub>j</sub>, representing the total holonomy accumulated along the loop. 

∑<sub>⟨i,j⟩∈γ</sub> denotes the summation over the geometric phases 

ϕ<sub>ij</sub> associated with the adjacency links ⟨i,j⟩ forming the loop γ around the 

tetrahedral face, representing the discrete approximation of the loop integral in the 

simplicial network. 

This expression demonstrates that the geometric phase ϕ in entangled states is not an 

arbitrary phase factor but rather reflects the discrete gauge-invariant holonomy around the 

shared tetrahedral face, grounding entanglement in spacetime's quantum geometry and 

linking quantum correlations to gauge fields and geometric properties of the simplicial 

network. The geometric phase ϕ thus provides a fundamental link between entanglement, 

gauge fields, and geometry in the Complete Theory of Simplicial Discrete Informational 

Spacetime, highlighting the deep interplay between quantum mechanics and geometry at the 

Planck scale. 

For incorporating spinorial degrees of freedom, such as fermions, into the framework 

and extending the gauge structure to non-Abelian gauge fields, the U(1) gauge theory can be 
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generalized to an SU(2) gauge theory. This generalization involves replacing the U(1) 

connection A<sub>ij</sub> with an SU(2) connection U<sub>ij</sub>, which are elements 

of the SU(2) group rather than complex phase factors, and extending the geometric phase 

concept to SU(2) holonomies, representing spin connection holonomies relevant for 

describing fermions and their interactions. In this SU(2) generalization, the entangled state 

for adjacent simplices s<sub>i</sub> and s<sub>j</sub> is modified to: 

|Ψ<sub>ij</sub>⟩ = 1/√2 (|1<sub>i</sub>0<sub>j</sub>⟩ + 

U<sub>ij</sub>|0<sub>i</sub>1<sub>j</sub>⟩) 

where U<sub>ij</sub> ∈ SU(2) represents an SU(2) holonomy or parallel transporter along 

the adjacency link ⟨i,j⟩, encoding spin connection holonomies and allowing for the 

incorporation of spinorial degrees of freedom and non-Abelian gauge fields, such as those 

relevant for describing the Standard Model of particle physics, into the simplicial spacetime 

framework. 

Geometric Phase as Discrete Gauge-Invariant Holonomy 

The geometric phase ϕ, and its SU(2) generalization, emerges as a discrete gauge-

invariant holonomy in the simplicial network, grounding entanglement in spacetime's 

quantum geometry and providing a framework for incorporating gauge fields and their 

interactions into the Complete Theory of Simplicial Discrete Informational Spacetime. These 

derivations demonstrate that the key parameters of the framework, such as the Poisson ratio, 

spacetime stiffness, and geometric phase, are not ad hoc assumptions but are rigorously 

derived from the underlying geometric and physical principles of simplicial spacetime, 

anchoring the theory in a solid foundation of mathematical and physical consistency. 

Continuum Limit Compatibility and Emergent Symmetries 

To demonstrate that the discrete simplicial network, the foundation of the Complete 

Theory of Discrete Informational Spacetime, preserves Lorentz symmetry and recovers local 

quantum field theories (QFTs) like the Standard Model at macroscopic scales, it is crucial to 

establish the compatibility of the discrete framework with the continuum limit of spacetime. 

This section outlines the key steps involved in demonstrating this continuum limit 

compatibility and the emergence of symmetries in the simplicial spacetime framework. 

Continuum Limit: From Discrete Network to Smooth Spacetime 

To bridge the gap between the discrete simplicial network and the smooth, continuous 

spacetime of classical physics, the framework proposes that macroscopic spacetime emerges 

from the discrete network through a process of coarse-graining. This section details the 

mechanism of coarse-graining and the mathematical framework for demonstrating the 

continuum limit of simplicial spacetime. 

Mechanism: Coarse-Graining for Smooth Manifold Approximation: 

At scales much larger than the Planck length (ℓ ≫ ℓ<sub>P</sub>), the simplicial 

network, fundamentally discrete at the Planck scale, is proposed to effectively approximate 

a smooth manifold through a process of coarse-graining. Coarse-graining is a general 

technique in physics used to describe macroscopic systems by averaging over microscopic 

details, effectively smoothing out short-scale fluctuations and revealing the emergent 

macroscopic behavior. In the context of simplicial spacetime, coarse-graining involves 

averaging over the discrete simplicial geometry at Planck scales, effectively "blurring" the 

discrete structure and revealing a smooth, continuous spacetime at macroscopic scales. This 

process of coarse-graining is analogous to how a fluid, composed of discrete atoms and 

molecules at microscopic scales, appears as a continuous medium at macroscopic scales, with 

its discrete atomic structure becoming effectively smoothed out at larger scales. 

Effective Metric from Averaging Planck-Scale Fluctuations: 

The discrete geometry of the simplicial network, characterized by Planck-scale 

fluctuations and discreteness, is averaged over Planck-scale fluctuations through the coarse-
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graining process, yielding an effective metric tensor (g<sub>μν</sub>). This effective metric 

tensor represents the emergent macroscopic spacetime geometry, capturing the smooth and 

continuous properties of spacetime at scales much larger than the Planck length. The effective 

metric tensor g<sub>μν</sub> is obtained by averaging over the discrete geometric degrees 

of freedom of the simplicial network, effectively smoothing out the Planck-scale discreteness 

and fluctuations and revealing the underlying smooth manifold structure of spacetime at 

macroscopic scales. This emergence of an effective metric tensor through coarse-graining 

provides a crucial link between the discrete simplicial network and the continuous spacetime 

of General Relativity, demonstrating how classical spacetime geometry can emerge from a 

fundamentally discrete quantum substrate. 

Mathematical Framework: Regge Calculus Continuum Limit and Metric Fluctuations 

To mathematically formalize the continuum limit and demonstrate the emergence of 

smooth spacetime from the discrete simplicial network, the framework leverages the Regge 

Calculus Continuum Limit and analyzes the behavior of metric fluctuations at different 

scales. 

Regge Calculus Continuum Limit: Convergence to Einstein-Hilbert Action 

The network's action, defined as the Regge action (S<sub>Regge</sub>) on the 

simplicial complex, is proposed to converge to the Einstein-Hilbert action 

(S<sub>EH</sub>) in the continuum limit, demonstrating that the simplicial spacetime 

framework recovers General Relativity at macroscopic scales. The Regge action 

(S<sub>Regge</sub>) for the simplicial network is defined as a sum over edges and vertices 

of the simplicial complex: 

S<sub>Regge</sub> = ∑<sub>edges</sub> ϵ<sub>v</sub>ℓ<sub>P</sub><sup>-

2</sup> + ∑<sub>vertices</sub> σ<sub>v</sub>ℓ<sub>P</sub><sup>-4</sup> 

where: 

S<sub>Regge</sub> represents the Regge action, a discrete action functional defined on the 

simplicial complex, approximating the Einstein-Hilbert action in the discrete setting. 

∑<sub>edges</sub> denotes the summation over all edges in the simplicial complex, 

representing the contribution of edge lengths and deficit angles to the Regge action. 

o ϵ<sub>v</sub> represents the deficit angle at each vertex v, quantifying the discrete 

curvature concentrated at the vertices of the simplicial complex. 

o ℓ<sub>P</sub><sup>-2</sup> is a factor with dimensions of inverse area, ensuring 

that the edge term has the correct dimensions of action. 

∑<sub>vertices</sub> denotes the summation over all vertices in the simplicial complex, 

representing potential vertex-based contributions to the Regge action, such as vertex 

stress terms. 

o σ<sub>v</sub> represents the vertex stress at each vertex v, quantifying the local 

geometric distortion at the vertices. 

o ℓ<sub>P</sub><sup>-4</sup> is a factor with dimensions of inverse 4-volume, 

ensuring that the vertex term has the correct dimensions of action. 

This Regge action, defined on the discrete simplicial network, is proposed to converge 

to the Einstein-Hilbert action (S<sub>EH</sub>) in the continuum limit, as the Planck length 

ℓ<sub>P</sub> approaches zero and the simplex densities (ρ) approach infinity: 

S<sub>Regge</sub> → S<sub>EH</sub> = (1 / 16πG) ∫√-g R d<sup>4</sup>x as 

ℓ<sub>P</sub> → 0 and ρ → ℓ<sub>P</sub><sup>-4</sup> 

where: 
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S<sub>EH</sub> represents the Einstein-Hilbert action, the fundamental action functional 

of General Relativity, describing classical gravity in terms of spacetime curvature. 

G represents the gravitational constant, relating the Einstein-Hilbert action to the strength of 

gravity. 

∫√-g R d<sup>4</sup>x represents the integral of the Ricci scalar curvature R over the 4-

dimensional spacetime manifold, weighted by the square root of the determinant of the 

metric tensor (-g), representing the continuum limit of the Regge action. 

ℓ<sub>P</sub> → 0 represents the continuum limit, where the Planck length approaches 

zero, effectively removing the discreteness of spacetime and approaching a smooth 

continuum. 

ρ → ℓ<sub>P</sub><sup>-4</sup> represents the limit of infinite simplex densities, where 

the number of simplices per unit 4-volume approaches infinity, effectively filling 

spacetime with an infinitely dense simplicial network and approaching a continuous 

manifold. 

This convergence of the Regge action to the Einstein-Hilbert action in the continuum 

limit demonstrates that the Simplex-Focused Framework recovers classical General 

Relativity at macroscopic scales, providing a crucial link between the discrete simplicial 

description and the continuous classical description of spacetime and gravity. The Regge 

Calculus Continuum Limit ensures that the framework is consistent with well-established 

classical gravity in the appropriate limit, validating its physical plausibility and its potential 

to describe quantum gravity as a fundamental theory underlying General Relativity 

(Karazoupis, 2025). 

Metric Fluctuations: Vanishing Quantum Fluctuations at Macroscopic Scales 

Quantum fluctuations of the metric tensor (δg<sub>μν</sub>), inherent in any quantum 

theory of gravity, are predicted to vanish macroscopically in the continuum limit, restoring 

diffeomorphism invariance, the fundamental symmetry of General Relativity, at macroscopic 

scales. The amplitude of quantum fluctuations of the metric tensor (δg<sub>μν</sub>) is 

estimated to scale with the Planck length squared (ℓ<sub>P</sub><sup>2</sup>) and 

inversely with the square of the scale of observation (ℓ<sup>2</sup>): 

δg<sub>μν</sub> ~ ℓ<sub>P</sub><sup>2</sup> / ℓ<sup>2</sup> 

where: 

δg<sub>μν</sub> represents the quantum fluctuations of the metric tensor, quantifying the 

magnitude of quantum uncertainties in spacetime geometry. 

ℓ<sub>P</sub><sup>2</sup> represents the Planck area, setting the amplitude scale for 

quantum metric fluctuations at the Planck scale. 

ℓ<sup>2</sup> represents the square of the scale of observation, characterizing the length 

scale at which spacetime geometry is being probed. 

This scaling relation indicates that quantum fluctuations of the metric tensor become 

increasingly suppressed as the scale of observation (ℓ) increases and moves away from the 

Planck scale (ℓ<sub>P</sub>). At macroscopic scales (ℓ ≫ ℓ<sub>P</sub>), the quantum 

fluctuations of the metric tensor become negligibly small (δg<sub>μν</sub> → 0), 

effectively vanishing macroscopically and leading to a smooth and classical spacetime 

geometry, where quantum fluctuations are suppressed and classical General Relativity 

becomes a valid effective description. The vanishing of metric fluctuations at macroscopic 

scales restores diffeomorphism invariance, the symmetry under general coordinate 

transformations that is a hallmark of General Relativity, ensuring that the emergent spacetime 

geometry at macroscopic scales respects the fundamental symmetries of classical gravity. 

Continuum Limit and Emergence of Smooth Spacetime 

The demonstration of the Regge Calculus Continuum Limit and the vanishing of metric 

fluctuations at macroscopic scales provides strong evidence that the Simplex-Focused 



 53 of 84 

 

Framework is compatible with the continuum limit and recovers smooth spacetime at 

macroscopic scales. The simplicial network, fundamentally discrete at the Planck scale, 

effectively approximates a smooth manifold via coarse-graining, with quantum fluctuations 

becoming negligible at macroscopic scales and diffeomorphism invariance being restored in 

the continuum limit. This establishes a crucial link between the discrete simplicial description 

and the continuous classical description of spacetime, bridging the gap between quantum 

gravity and classical General Relativity and validating the physical plausibility of the 

Simplex-Focused Framework as a theory of quantum spacetime. 

Lorentz Symmetry Preservation: Recovering Relativistic Invariance at Macroscopic 

Scales 

To ensure the physical realism and consistency of the Simplex-Focused Framework, it 

is crucial to demonstrate that the discrete simplicial network preserves Lorentz symmetry, 

the fundamental symmetry of spacetime in special and general relativity, and recovers 

Lorentz invariance at macroscopic scales, even though it is fundamentally discrete at the 

Planck scale. This section outlines the key steps involved in demonstrating Lorentz symmetry 

preservation and the emergence of relativistic invariance in the simplicial spacetime 

framework. 

Isotropy and Homogeneity: Emergence of Spacetime Symmetries 

Preserving Lorentz symmetry in the continuum limit of the discrete simplicial network 

requires demonstrating the emergence of key properties and symmetries at macroscopic 

scales, ensuring that the emergent spacetime behaves consistently with the principles of 

special and general relativity. The key steps involved in demonstrating Lorentz symmetry 

preservation include: 

Dynamical Triangulation for Isotropy and Homogeneity: 

Dynamical Triangulation for Isotropy and Homogeneity: The network's dynamical 

triangulation, a key feature of Simplicial Quantum Gravity and CDT, ensures that no 

preferred frame exists at large scales in the emergent spacetime, promoting isotropy and 

homogeneity, the symmetries of flat spacetime in special relativity and of cosmological 

spacetimes in general relativity. Dynamical triangulation, where the simplicial network is 

dynamically evolved and reconfigured through Pachner moves, effectively averages over 

different simplicial configurations, suppressing preferred directions or locations and leading 

to a statistically isotropic and homogeneous spacetime at macroscopic scales. This dynamical 

averaging process ensures that the emergent spacetime does not exhibit any preferred 

directions or locations, respecting the principles of isotropy and homogeneity that are 

fundamental to Lorentz symmetry and relativistic invariance. 

Randomized Simplex Orientations for Statistical Isotropy 

Randomized Simplex Orientations for Statistical Isotropy: Randomized simplex 

orientations, where the orientations of individual simplices are assigned randomly or 

statistically, further contribute to the emergence of statistical isotropy in the simplicial 

network. Randomizing simplex orientations effectively averages over different causal 

orderings and directional biases at the Planck scale, suppressing any preferred directions or 

anisotropies and promoting statistical isotropy at macroscopic scales. This randomization of 

simplex orientations ensures that the emergent spacetime is statistically isotropic, meaning 

that its properties are statistically invariant under rotations, consistent with Lorentz symmetry 

and relativistic invariance. 

Dispersion Relations: Relativistic Dispersion for Massless Excitations 

Discrete Propagator Matching Continuum Relativistic Form: For massless excitations, 

such as photons, propagating on the simplicial network, the discrete propagator G(k), 

describing the propagation of these excitations in the discrete spacetime, is shown to match 

the continuum relativistic form in the low-energy limit, demonstrating that Lorentz symmetry 

is preserved for massless particles propagating on the emergent spacetime. The discrete 
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propagator G(k) for massless excitations on the simplicial network is mathematically derived 

to be: 

G(k)<sup>-1</sup> ∝ k<sup>2</sup> + 

O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) 

where: 

o G(k) represents the discrete propagator in momentum space, describing the propagation 

of massless excitations with momentum k on the simplicial network. 

o k<sup>2</sup> represents the relativistic dispersion relation for massless particles in 

Minkowski spacetime, reflecting Lorentz invariance and the linear relationship between 

energy and momentum for massless particles. 

o O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represents higher-order terms in the 

momentum expansion, suppressed by powers of (kℓ<sub>P</sub>)<sup>2</sup>, 

which become negligible at low energies (kℓ<sub>P</sub> ≪ 1) but may become 

relevant at high energies approaching the Planck scale. 

Discrete Propagator Matching Continuum Relativistic Form 

Discrete Propagator Matching Continuum Relativistic Form: For massless excitations, 

such as photons, propagating on the simplicial network, the discrete propagator G(k), 

describing the propagation of these excitations in the discrete spacetime, is shown to match 

the continuum relativistic form in the low-energy limit, demonstrating that Lorentz symmetry 

is preserved for massless particles propagating on the emergent spacetime. The discrete 

propagator G(k) for massless excitations on the simplicial network is mathematically derived 

to be: 

G(k)<sup>-1</sup> ∝ k<sup>2</sup> + 

O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) 

where: 

o G(k) represents the discrete propagator in momentum space, describing the propagation 

of massless excitations with momentum k on the simplicial network. 

o k<sup>2</sup> represents the relativistic dispersion relation for massless particles in 

Minkowski spacetime, reflecting Lorentz invariance and the linear relationship between 

energy and momentum for massless particles. 

o O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represents higher-order terms in the 

momentum expansion, suppressed by powers of (kℓ<sub>P</sub>)<sup>2</sup>, 

which become negligible at low energies (kℓ<sub>P</sub> ≪ 1) but may become 

relevant at high energies approaching the Planck scale. 

This matching of the discrete propagator to the continuum relativistic form in the low-

energy limit demonstrates that Lorentz symmetry is effectively preserved for massless 

excitations propagating on the emergent simplicial spacetime, ensuring consistency with 

special relativity and relativistic field theory at macroscopic scales. The higher-order terms 

O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) represent Lorentz-violating corrections 

that become relevant at high energies approaching the Planck scale, potentially leading to 

observable deviations from Lorentz invariance at extreme energies. 

Suppression of Lorentz-Violating Terms at Low Energies 

Suppression of Lorentz-Violating Terms at Low Energies: The higher-order terms 

O(k<sup>4</sup>ℓ<sub>P</sub><sup>2</sup>) in the discrete propagator, representing 

Lorentz-violating corrections, are shown to be suppressed by powers of 

(ℓ<sub>P</sub>/λ)<sup>2</sup> ≪ 1 at low energies, where λ is the wavelength of the 

excitation and ℓ<sub>P</sub> is the Planck length. This suppression of Lorentz-violating 

terms at low energies ensures that Lorentz invariance is effectively recovered at macroscopic 

scales, where wavelengths are much larger than the Planck length, and that deviations from 
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Lorentz invariance become negligible in the classical limit, consistent with experimental 

constraints on Lorentz violation at low energies. 

Noether's Theorem for Discrete Symmetries: Emergence of Conserved Quantities 

Translational and Rotational Invariance Leading to Conservation Laws: The network's 

translational and rotational invariance, emerging statistically at large scales due to dynamical 

triangulation and randomized simplex orientations, implies the emergence of conserved 

quantities, such as energy-momentum and angular momentum, through Noether's theorem, a 

fundamental principle linking symmetries and conservation laws in physics. Noether's 

theorem, adapted for discrete symmetries in the simplicial framework, demonstrates that the 

statistical translational invariance of the simplicial network leads to the conservation of 

energy-momentum, while the statistical rotational invariance leads to the conservation of 

angular momentum, ensuring consistency with fundamental conservation laws in physics and 

providing further evidence for Lorentz symmetry preservation in the continuum limit. 

Observational Test: Photon Propagation and Lorentz Invariance Tests 

The preservation of Lorentz symmetry in the simplicial spacetime framework is further 

supported by observational tests, particularly experiments probing photon propagation and 

searching for violations of Lorentz invariance. The predicted energy-dependent speed of light 

for photons, arising from spacetime discreteness, leads to subtle deviations from Lorentz 

invariance at high energies, which can be tested by observing high-energy photons from 

astrophysical sources like Gamma-Ray Bursts (GRBs). Specifically, the predicted speed of 

light deviation v(E) = c(1 - 1/2(E/E<sub>P</sub>)<sup>2</sup>) deviates from the constant 

speed of light c only at energies approaching the Planck energy scale (E ~ E<sub>P</sub>), 

consistent with Lorentz invariance tests at lower energies, such as those performed by Fermi-

LAT GRB observations, which have found no detectable Lorentz violation at current 

experimental sensitivities (Δc/c < 10<sup>-19</sup>). Future, more sensitive instruments 

probing photon propagation at even higher energies may be able to detect the predicted 

energy-dependent speed of light and provide observational evidence for Lorentz violation 

and spacetime discreteness at the Planck scale, testing the validity of the Lorentz Symmetry 

Preservation in the Simplex-Focused Framework. 

Coupling to the Standard Model: Refined and Detailed 

To fully integrate the Standard Model of particle physics into the discrete simplicial 

framework, while preserving mathematical consistency and empirical validity, the Complete 

Theory of Simplicial Discrete Informational Spacetime refines the coupling mechanisms for 

matter fields to the simplicial network, providing a detailed and physically plausible 

embedding of matter and forces within the quantum geometry of simplicial spacetime. This 

section outlines these refined coupling mechanisms, focusing on the representation of 

fermions, bosons, and the Higgs field on the simplicial network and their interactions with 

the underlying simplicial geometry. 

Matter Fields on the Network: Simplicial Representation of Fundamental Particles and 

Fields 

To incorporate matter fields into the simplicial spacetime framework, the fundamental 

degrees of freedom of matter, representing leptons, quarks, gauge bosons, and the Higgs field, 

are introduced directly on the simplicial network, endowing the simplicial building blocks 

with matter content and providing a discrete representation of matter fields in simplicial 

spacetime. 

Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices 

Fermions, the fundamental constituents of matter, such as leptons (electrons, neutrinos) 

and quarks, are incorporated into the simplicial framework by assigning vertex spinors to 

each vertex of the simplicial network. This vertex spinor representation endows the vertices 

with fermionic degrees of freedom and provides a discrete representation of fermionic fields 

propagating on the simplicial spacetime. 
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Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices: Fermionic degrees of 

freedom are mathematically introduced by assigning a spinor field ψ<sub>vα</sub> to each 

vertex v of the simplicial network. The spinor field ψ<sub>vα</sub> is defined as a 

Grassmann-valued Dirac spinor, a mathematical object that transforms as a spinor under 

Lorentz transformations and obeys fermionic anticommutation relations, ensuring that it 

describes fermionic particles with spin-1/2 and consistent quantum statistics in 4-dimensional 

spacetime. The index α = 1, 2, 3, 4 represents the Dirac spinor index, labeling the four 

components of the Dirac spinor, corresponding to the four independent spin degrees of 

freedom for fermions in 4-dimensional spacetime. The vertex spinors ψ<sub>vα</sub> are 

Grassmann-valued, meaning that they are anti-commuting variables, reflecting the fermionic 

nature of matter fields and ensuring that they obey the Pauli exclusion principle and Fermi-

Dirac statistics, fundamental principles governing the behavior of fermions in quantum 

mechanics and particle physics. 

Mathematical Representation of Vertex Spinors 

The vertex spinor field ψ<sub>vα</sub> is mathematically represented as a Grassmann-

valued Dirac spinor assigned to each vertex v of the simplicial network, mapping each vertex 

to an element in a Grassmann algebra: 

ψ<sub>vα</sub>: Vertex v → Grassmann algebra 

where: 

ψ<sub>vα</sub> denotes the spinor field at vertex v, a function that assigns a Grassmann 

number to each vertex v for each spinor index α, representing the fermionic degree of 

freedom associated with that vertex and spinor component. 

Vertex v denotes a vertex in the simplicial network, representing a discrete point in simplicial 

spacetime where fermionic fields are localized. 

α = 1, 2, 3, 4 denotes the Dirac spinor index, labeling the four components of the Dirac spinor 

in 4-dimensional spacetime, corresponding to the four independent spin degrees of 

freedom for relativistic fermions. 

Grassmann algebra denotes the mathematical algebra of Grassmann numbers, also known as 

exterior algebra or anti-commuting algebra, which are algebraic numbers that anti-

commute under multiplication (i.e., ψ<sub>1</sub>ψ<sub>2</sub> = -

ψ<sub>2</sub>ψ<sub>1</sub>), ensuring that the spinor field obeys fermionic 

statistics and the Pauli exclusion principle. 

This assignment of Grassmann-valued Dirac spinors to each vertex provides a discrete 

representation of fermionic fields in simplicial spacetime, with the vertex spinors acting as 

the fundamental fermionic degrees of freedom in the simplicial framework, localized at the 

vertices of the simplicial network and propagating across the network through kinetic terms 

in the matter Hamiltonian. 

Grassmann Algebra: Fermionic Anticommutation Relations 

To ensure that the vertex spinors ψ<sub>vα</sub> describe fermionic particles, they are 

required to satisfy fermionic anticommutation relations, reflecting the Pauli exclusion 

principle and Fermi-Dirac statistics obeyed by fermions. The fermionic anticommutation 

relations for vertex spinors ψ<sub>vα</sub> and ψ<sub>v'β</sub> at vertices v and v' with 

spinor indices α and β are mathematically expressed as: 

{ψ<sub>vα</sub>, ψ<sub>v'β</sub>} = δ<sub>vv'</sub>δ<sub>αβ</sub> 

where: 

{ψ<sub>vα</sub>, ψ<sub>v'β</sub>} = ψ<sub>vα</sub>ψ<sub>v'β</sub> + 

ψ<sub>v'β</sub>ψ<sub>vα</sub> denotes the anticommutator between the vertex 

spinors ψ<sub>vα</sub> and ψ<sub>v'β</sub>, defined as the sum of their products in 

both possible orderings, and enforcing the fermionic nature of the spinor fields by 
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requiring that their anticommutator is non-zero only when they correspond to the same 

vertex and spinor index. 

δ<sub>vv'</sub> represents the Kronecker delta in vertex indices, ensuring that 

anticommutation relations apply only to spinors at the same vertex (v = v') and that 

spinors at different vertices (v ≠ v') are independent and commute with each other. 

δ<sub>αβ</sub> represents the Kronecker delta in spinor indices, ensuring that 

anticommutation relations apply only to spinor components with the same spinor index 

(α = β) and that different spinor components (α ≠ β) are independent and commute with 

each other. 

These fermionic anticommutation relations mathematically enforce the fermionic nature 

of the vertex spinor fields, ensuring that they describe fermionic particles that obey the Pauli 

exclusion principle and Fermi-Dirac statistics, consistent with the properties of leptons and 

quarks in the Standard Model of particle physics. 

Chirality: Enforced by 4D Orientation 

Chirality: Enforced by 4D Orientation: Chirality, the handedness of fermions and the 

observed asymmetry between left-handed and right-handed fermions in weak interactions, is 

naturally enforced by the 4D orientation of the simplicial network. The 4D orientation, 

assigned to each 4-simplex to enforce causal ordering, also distinguishes between left-handed 

and right-handed spinors, projecting out unwanted fermion modes with opposite chirality and 

ensuring that only chiral fermions, consistent with the Standard Model, emerge from the 

simplicial framework (Karazoupis, 2025). Left-handed and right-handed projections of the 

vertex spinor field, ψ<sub>L/R</sub> = (1/2)(1 ∓ γ<sup>5</sup>)ψ<sub>v</sub>, where 

γ<sup>5</sup> is the chiral gamma matrix, are naturally enforced by the simplicial network's 

4D orientation, ensuring that the emergent fermionic fields are chiral and consistent with the 

observed chirality of weak interactions in particle physics, without requiring ad hoc chiral 

projections or fine-tuning. 

Species Avoidance: Nielsen-Ninomiya Theorem Circumvention 

Species Avoidance: Nielsen-Ninomiya Theorem Circumvention via Non-Bipartite 

Lattice: Species avoidance, the problem of fermion doubling where lattice fermion 

formulations typically predict spurious fermion modes (doublers) in addition to the physical 

fermion modes, is circumvented by the non-bipartite structure of the simplicial network. The 

simplicial network, unlike simple hypercubic lattice structures commonly used in lattice field 

theory, is non-bipartite, meaning that its vertices cannot be divided into two disjoint 

sublattices with alternating connectivity. The Nielsen-Ninomiya theorem, a no-go theorem 

in lattice field theory, states that under certain assumptions, including bipartiteness of the 

lattice, chiral fermion formulations inevitably lead to fermion doubling. However, the non-

bipartite structure of the simplicial network, arising from the complex connectivity of 

simplicial complexes and the non-regular lattice structure, naturally suppresses fermion 

doublers, ensuring that only physical fermion modes emerge from the simplicial framework 

and circumventing the fermion doubling problem that plagues many lattice fermion 

formulations based on bipartite lattices. This non-bipartite structure of the simplicial network 

provides a natural mechanism for species avoidance, ensuring that the fermionic sector of the 

Simplex-Focused Framework is physically realistic and free from spurious fermion modes. 

Edge Gauge Fields: Gauge Fields Assigned to Edges 

Bosons, the force-carrying particles mediating fundamental interactions, such as photons 

(electromagnetic force) and gluons (strong nuclear force), are incorporated into the simplicial 

framework by assigning gauge fields to the edges of the simplicial network and defining face 

holonomies to represent gauge-invariant field strengths and curvature. This edge-based 

representation of gauge fields provides a discrete geometric formulation of gauge theories in 

simplicial spacetime. 

Gauge Field Assignment for Different Gauge Groups: 
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Gauge fields, fundamental fields mediating forces like electromagnetism and the weak 

and strong nuclear forces, are proposed to emerge in the Simplex-Focused Framework from 

holonomies of geometric phases associated with loops in the simplicial network, representing 

discrete gauge connections and curvature in simplicial spacetime. Gauge fields are assigned 

to edges as connections. Bosonic degrees of freedom, specifically gauge fields mediating 

fundamental interactions, are mathematically introduced by assigning a gauge field 

A<sub>ija</sub> to each edge e<sub>ij</sub> connecting vertices v<sub>i</sub> and 

v<sub>j</sub> in the simplicial network. The gauge field A<sub>ija</sub> is a Lie algebra-

valued gauge field, belonging to the Lie algebra of the gauge group SU(N), where N is the 

number of colors for non-Abelian gauge fields (e.g., N=3 for QCD) or N=1 for Abelian gauge 

fields (e.g., N=1 for electromagnetism). The index a = 1, 2, ..., N<sup>2</sup>-1 represents 

the adjoint index of the gauge field, labeling the different components of the gauge field in 

the Lie algebra representation. For Abelian gauge fields like electromagnetism (U(1) gauge 

group), the gauge field A<sub>ij</sub> is simply a U(1) gauge field, represented by a 

complex phase factor or a real-valued connection. 

SU(3) Gauge Fields (Gluons) 

SU(3) Gauge Fields (Gluons): For Quantum Chromodynamics (QCD), the theory of 

strong nuclear force, SU(3) gauge fields, representing gluons, are assigned to the edges of 

the simplicial network. Triplet holonomies U<sub>ija</sub>, transforming in the triplet 

representation of SU(3), are used to represent gluons, with the index a = 1, 2, 3 labeling the 

color indices of gluons, reflecting the threefold color symmetry of QCD and the eight gluon 

fields mediating strong interactions between quarks (Karazoupis, 2025).  

These SU(3) gauge fields, assigned to the edges of the simplicial network, mediate the 

strong force between quarks, which are represented by vertex spinors in the simplicial 

framework, providing a discrete geometric representation of Quantum Chromodynamics in 

simplicial spacetime. 

SU(2) Gauge Fields (W-Bosons) 

SU(2) Gauge Fields (W-Bosons): For the weak nuclear force, SU(2) gauge fields, 

representing W-bosons and mediating weak interactions, are assigned to the edges of the 

simplicial network. Doublet holonomies U<sub>ijb</sub>, transforming in the doublet 

representation of SU(2), are used to represent W-bosons, with the index b = 1, 2 labeling the 

weak isospin indices of W-bosons, reflecting the doublet structure of weak isospin symmetry 

and the three W-boson fields mediating weak interactions between leptons and quarks 

(Karazoupis, 2025). These SU(2) gauge fields, assigned to the edges of the simplicial 

network, mediate the weak force between fermions, providing a discrete geometric 

representation of the weak interaction in simplicial spacetime. 

U(1) Gauge Field (Photons) 

U(1) Gauge Field (Photons): For electromagnetism, the U(1) gauge field, representing 

photons, is assigned to the edges of the simplicial network. Phase holonomies 

U<sub>ij</sub> = e<sup>ieA<sub>ij</sub></sup>, transforming in the U(1) representation, 

are used to represent photons, with A<sub>ij</sub> being a real-valued connection and e 

being the electric charge, reflecting the Abelian nature of electromagnetism and the phase 

transformations of charged particles (Karazoupis, 2025). This U(1) gauge field, assigned to 

the edges of the simplicial network, mediates the electromagnetic force between charged 

fermions, providing a discrete geometric representation of Quantum Electrodynamics (QED) 

in simplicial spacetime. 

Face Holonomies: Curvature and Field Strength from Parallel Transport 

Face holonomies U<sub>ijk</sub>, representing parallel transport of quantum states 

around triangular faces Δijk in the simplicial network, are defined to encode curvature and 

field strength for the gauge fields. The face holonomy U<sub>ijk</sub> is mathematically 



 59 of 84 

 

defined as the path-ordered exponential of the gauge connection A along the closed loop 

bounding the triangular face Δijk: 

U<sub>ijk</sub> = P exp(i∮<sub>Δijk</sub> A) 

where: 

U<sub>ijk</sub> represents the face holonomy, an element of the gauge group (U(1), SU(2), 

or SU(3)), quantifying the parallel transport of quantum states around the triangular face 

Δijk and representing the gauge-invariant measure of curvature. 

P denotes path-ordering, the path-ordered exponential, ensuring proper ordering of gauge 

connections along the closed loop in non-Abelian gauge theories. 

Total Quantum Hamiltonian: Geometric, Matter, and Interaction Terms 

The total quantum Hamiltonian (Ĥ) for the Complete Theory of Discrete Informational 

Spacetime, governing the dynamics of the simplicial network and the evolution of spacetime 

and matter, includes not only the geometric Hamiltonian (Ĥ<sub>geo</sub>), describing the 

dynamics of simplicial geometry, but also matter Hamiltonian (Ĥ<sub>matter</sub>) terms, 

describing the dynamics of matter fields, and interaction Hamiltonian (Ĥ<sub>int</sub>) 

terms, describing the coupling between geometry and matter. This total Hamiltonian provides 

a unified quantum description of spacetime, matter, and their interactions within the 

simplicial framework. 

Geometric Hamiltonian (Ĥ<sub>geo</sub>): Dynamics of Simplicial Geometry 

The geometric Hamiltonian (Ĥ<sub>geo</sub>), describing the dynamics of simplicial 

geometry and the quantum fluctuations of spacetime, is defined as the sum of geometric 

stress, coupling, and decoherence terms, as detailed in Section "Quantum Hamiltonian." The 

geometric Hamiltonian is mathematically expressed as: 

Ĥ<sub>geo</sub> = 

∑<sub>v</sub> (Y/2)σ<sub>v</sub><0xE2><0xE2><sub>vertex</sub> - 

J∑<sub>⟨i,j⟩</sub> σ<sub>i</sub><sup>x</sup>σ<sub>j</sub><sup>x</sup> + 

h∑<sub>i</sub> σ<sub>i</sub><sup>z</sup> 

This geometric Hamiltonian governs the dynamics of the simplicial network in the 

absence of matter fields, describing the quantum fluctuations and evolution of simplicial 

spacetime due to geometric stress, quantum coupling between simplices, and decoherence 

processes. The detailed explanation of each term in the geometric Hamiltonian is provided in 

Section "Quantum Hamiltonian," outlining their physical interpretation and mathematical 

formulation. 

Matter Hamiltonian (Ĥ<sub>matter</sub>): Dynamics of Matter Fields on Simplicial 

Spacetime 

The matter Hamiltonian (Ĥ<sub>matter</sub>), describing the dynamics of matter 

fields propagating on the simplicial spacetime, is defined as the sum of fermionic and bosonic 

kinetic terms, representing the kinetic energy and propagation of fermionic and bosonic 

matter fields on the simplicial network. 

Fermionic Kinetic Term (Ĥ<sub>fermion</sub>) 

The fermionic kinetic term (Ĥ<sub>fermion</sub>) describes the kinetic energy of 

fermionic fields, represented by vertex spinors ψ<sub>vα</sub>, and their propagation or 

hopping across the simplicial network. The fermionic kinetic term is mathematically 

expressed as: 

Ĥ<sub>fermion</sub> = -t 

∑<sub>⟨v,v'⟩</sub> (ψ<sub>v</sub><sup>†</sup>ψ<sub>v'</sub> + h.c.) 

where: 
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Ĥ<sub>fermion</sub> represents the fermionic kinetic term, contributing to the total 

Hamiltonian and describing the dynamics of fermionic matter fields. 

-t ∑<sub>⟨v,v'⟩</sub> denotes the summation over all pairs of adjacent vertices ⟨v,v'⟩ in the 

simplicial network, representing the hopping of fermions between adjacent vertices. 

o t represents the hopping parameter, quantifying the strength of fermionic hopping 

between adjacent vertices and related to the kinetic energy scale of fermions. In this 

framework, the hopping parameter is approximated to be of the order of Planck 

energy (t ~ E<sub>P</sub>), reflecting the Planck-scale nature of fundamental 

interactions. 

o ψ<sub>v</sub><sup>†</sup> and ψ<sub>v'</sub> represent fermionic creation 

and annihilation operators for vertex spinors at vertices v and v', respectively, 

creating or annihilating fermions at specific vertices in the simplicial network. 

o h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is 

Hermitian and represents a physical observable. 

This fermionic kinetic term describes the hopping of vertex spinors between adjacent 

vertices in the simplicial network, representing the propagation of fermionic matter fields 

across simplicial spacetime. The hopping parameter t determines the kinetic energy scale of 

fermions, and the summation over adjacent vertices ensures that fermions propagate locally 

within the simplicial network, respecting locality and causality. 

Bosonic Kinetic Term (Ĥ<sub>boson</sub>) 

The bosonic kinetic term (Ĥ<sub>boson</sub>) describes the kinetic energy of bosonic 

fields, represented by edge gauge fields A<sub>ija</sub> and face holonomies 

U<sub>ijk</sub>, and their propagation or dynamics on the simplicial network. The bosonic 

kinetic term is mathematically expressed as: 

Ĥ<sub>boson</sub> = (1/4g<sup>2</sup>) ∑<sub>faces</sub> Tr(U<sub>ijk</sub> + 

U<sub>ijk</sub><sup>†</sup>) 

where: 

Ĥ<sub>boson</sub> represents the bosonic kinetic term, contributing to the total 

Hamiltonian and describing the dynamics of bosonic gauge fields. 

(1/4g<sup>2</sup>) ∑<sub>faces</sub> denotes the summation over all triangular faces in 

the simplicial network, representing the contribution of face holonomies to the bosonic 

kinetic energy. 

o g represents the gauge coupling constant, quantifying the strength of gauge 

interactions and determining the kinetic energy scale of bosons. In this framework, 

the gauge coupling constant is approximated to be of the order of 

ℏc/ℓ<sub>P</sub>, reflecting the Planck-scale nature of fundamental interactions. 

o U<sub>ijk</sub> represents the face holonomy associated with the triangular face 

Δijk, encoding the curvature and field strength of the gauge field, as defined in  

"Curvature from Holonomy." 

o Tr denotes the trace operator, summing over the diagonal elements of the SU(N) 

matrix U<sub>ijk</sub> for non-Abelian gauge fields, ensuring gauge invariance 

and proper normalization of the kinetic term. 

o U<sub>ijk</sub><sup>†</sup> represents the Hermitian conjugate of the face 

holonomy U<sub>ijk</sub>, ensuring that the Hamiltonian is Hermitian and 

represents a physical observable. 

This bosonic kinetic term describes the propagation of edge gauge fields via face 

holonomies in the simplicial network, representing the dynamics of bosonic matter fields and 

their gauge-invariant kinetic energy. The gauge coupling constant g determines the kinetic 
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energy scale of bosons, and the summation over triangular faces ensures that bosons 

propagate locally within the simplicial network, respecting locality and gauge invariance. 

Interaction Hamiltonian (Ĥ<sub>int</sub>): Coupling Geometry to Matter via Stress-

Energy 

The interaction Hamiltonian (Ĥ<sub>int</sub>) describes the coupling between 

geometry and matter fields in the simplicial spacetime framework, mediating the 

gravitational interaction between spacetime geometry and matter content. The interaction 

Hamiltonian is proposed to couple geometry to matter via stress-energy, reflecting the 

fundamental principle of General Relativity that matter and energy source spacetime 

curvature and gravity. The interaction Hamiltonian is mathematically expressed as: 

Ĥ<sub>int</sub> =∑<sub>v</sub> (σ<sub>v</sub> ⋅T<sub>v</sub><sup>matter</s

up>) 

where: 

Ĥ<sub>int</sub> represents the interaction Hamiltonian, contributing to the total 

Hamiltonian and describing the coupling between geometry and matter fields. 

∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 

representing the local coupling between vertex stress and matter stress-energy at each 

vertex. 

o σ<sub>v</sub> represents the vertex stress operator at vertex v, quantifying the 

geometric stress concentration at the vertex. 

o T<sub>v</sub><sup>matter</sup> represents the matter stress-energy tensor at 

vertex v, quantifying the energy and momentum density of matter fields localized at 

the vertex. In this framework, the matter stress-energy tensor is approximated by 

T<sub>v</sub><sup>matter</sup> = 

ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> + 

(1/2)Tr(F<sub>ij</sub><sup>2</sup>), representing contributions from both 

fermionic and bosonic matter fields, where 

ψ<sub>v</sub><sup>†</sup>ψ<sub>v</sub> represents the fermionic energy 

density and Tr(F<sub>ij</sub><sup>2</sup>) represents the bosonic field energy 

density. 

This interaction Hamiltonian couples the geometric stress operator σ<sub>v</sub> at 

each vertex v to the matter stress-energy tensor T<sub>v</sub><sup>matter</sup> at the 

same vertex, representing a local coupling between geometry and matter that is consistent 

with the principle of locality in physics. The interaction Hamiltonian ensures that matter 

fields act as sources for spacetime curvature, with the stress-energy tensor of matter fields 

contributing to the geometric stress in the simplicial network, and thus influencing the 

dynamics of simplicial spacetime and the emergence of gravity in the Complete Theory of 

Simplicial Discrete Informational Spacetime. 

Semiclassical Einstein Equation: Emergence of Classical Gravity from Quantum 

Hamiltonian 

The semiclassical Einstein equations, describing the dynamics of classical spacetime 

geometry sourced by quantum matter fields, emerge from the total quantum Hamiltonian (Ĥ) 

in the Complete Theory of Simpicial Discrete Informational Spacetime through a process of 

expectation value and coarse-graining. This derivation demonstrates how classical gravity, 

as described by Einstein's field equations, emerges from the underlying quantum dynamics 

of the simplicial network and its coupling to matter fields. 

Geometric Sector Expectation Value: Emergent Einstein Tensor 

To derive the semiclassical Einstein equations, expectation values of relevant quantum 

operators are considered, representing macroscopic observables that describe the emergent 
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classical spacetime geometry and matter distribution. Specifically, expectation values are 

taken for the geometric sector and the matter sector of the theory: 

Geometric Sector Expectation Value: Emergent Einstein Tensor: The expectation value 

of the geometric Hamiltonian (Ĥ<sub>geo</sub>) with respect to the metric operator 

ĝ<sub>μν</sub> is considered, representing the emergent Einstein tensor 

⟨G<sub>μν</sub>⟩, which describes the macroscopic curvature of spacetime: 

⟨G<sub>μν</sub>⟩ = (δ⟨Ĥ<sub>geo</sub>⟩ / δg<sub>μν</sub>) ∝ 

∑<sub>v</sub> ⟨σ<sub>v</sub>⟩ ⋅ (δv<sub>vertex</sub> / δg<sub>μν</sub>) 

This expectation value relates the emergent Einstein tensor ⟨G<sub>μν</sub>⟩ to the 

expectation value of the vertex stress operator ⟨σ<sub>v</sub>⟩, demonstrating how 

spacetime curvature emerges from the quantum expectation value of geometric stress in the 

simplicial network. 

Matter Sector Expectation Value: Emergent Stress-Energy Tensor 

Matter Sector Expectation Value: Emergent Stress-Energy Tensor: The expectation 

value of the matter Hamiltonian (Ĥ<sub>matter</sub>) with respect to the metric operator 

ĝ<sub>μν</sub> is considered, representing the emergent stress-energy tensor 

⟨T<sub>μν</sub>⟩, which describes the macroscopic distribution of energy and momentum 

sourcing spacetime curvature: 

⟨T<sub>μν</sub>⟩ = (δ⟨Ĥ<sub>matter</sub>⟩ / δg<sub>μν</sub>) ∝ 

∑<sub>v</sub> ⟨T<sub>v</sub><sup>matter</sup>⟩ 

This expectation value relates the emergent stress-energy tensor ⟨T<sub>μν</sub>⟩ to 

the expectation value of the matter stress-energy tensor T<sub>v</sub><sup>matter</sup>, 

demonstrating how the macroscopic distribution of matter and energy emerges from the 

quantum expectation values of matter field operators in the simplicial network. 

The semiclassical Einstein equations are derived by varying the total action S = ∫dt 

⟨Ψ|Ĥ|Ψ⟩ with respect to the metric tensor g<sub>μν</sub> and applying a variational 

principle, minimizing the action with respect to metric variations: 

δS / δg<sub>μν</sub> = 0 ⟹ ⟨G<sub>μν</sub>⟩ = 8πG⟨T<sub>μν</sub>⟩ 
This variational principle, minimizing the total action with respect to metric variations, 

leads to the semiclassical Einstein equations: 

G<sub>μν</sub> = 8πG⟨T<sub>μν</sub>⟩ 
where: 

G<sub>μν</sub> represents the Einstein tensor, describing the macroscopic curvature of 

spacetime. 

⟨T<sub>μν</sub>⟩ represents the expectation value of the stress-energy tensor, describing 

the macroscopic distribution of matter and energy. 

G represents the gravitational constant, relating spacetime curvature to matter and energy 

density. 

8π is a numerical factor arising from the conventions used in General Relativity. 

Coupling Constant: Planck-Scale Relation for Gravitational Constant 

The coupling constant in the semiclassical Einstein equations, relating spacetime 

curvature to the stress-energy tensor, is identified with the gravitational constant G, which is 

further related to the Planck length ℓ<sub>P</sub> and the reduced Planck constant ℏc 

through the Planck-scale relation: 

8πG = ℓ<sub>P</sub><sup>2</sup> / ℏc 

This Planck-scale relation for the gravitational constant ensures that the coupling 

between geometry and matter in the semiclassical Einstein equations is consistent with the 
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Planck scale and the fundamental units of the Complete Theory of Simplicial Discrete 

Informational Spacetime, providing a consistent and physically meaningful coupling 

between spacetime curvature and matter sources in the emergent classical limit. 

Conservation Laws: Stress-Energy Conservation from Gauge Invariance 

The conservation of stress-energy, a fundamental principle in physics stating that energy 

and momentum are conserved in spacetime, is mathematically enforced in the Simplicial 

Spacetime Theory Framework by the Hamiltonian's gauge invariance, ensuring consistency 

with fundamental conservation laws and physical realism. The stress-energy tensor 

⟨T<sub>μν</sub>⟩, derived from the matter Hamiltonian, is mathematically shown to be 

conserved, satisfying the covariant conservation law: 

∇<sub>μ</sub>⟨T<sup>μν</sup>⟩ = 0 

where ∇<sub>μ</sub> represents the covariant derivative, ensuring that stress-energy 

conservation is consistent with general covariance and spacetime curvature. This 

conservation law is enforced by the gauge invariance of the Hamiltonian, particularly the 

gauge invariance of the matter Hamiltonian (Ĥ<sub>matter</sub>) and the interaction 

Hamiltonian (Ĥ<sub>int</sub>), which are constructed to be invariant under gauge 

transformations, such as U(1) gauge transformations for electromagnetism and SU(3) gauge 

transformations for QCD. Gauge invariance, a fundamental symmetry principle in physics, 

ensures that the stress-energy tensor is conserved, reflecting the underlying symmetries of 

the theory and guaranteeing the physical consistency of the emergent semiclassical Einstein 

equations and the conservation of energy and momentum in simplicial spacetime. 

Standard Model Symmetries: Emergence of Gauge Symmetries from Simplicial 

Structure 

The symmetries of the Standard Model (SM) of particle physics, including SU(3) color 

symmetry, SU(2) weak isospin symmetry, and U(1) hypercharge/electromagnetism 

symmetry, are not merely imposed on the simplicial framework but are proposed to emerge 

dynamically from the connectivity patterns and geometric properties of the simplicial 

network, providing a geometric and structural origin for the fundamental symmetries of 

particle physics within the Complete Theory of Simplicial Discrete Informational Spacetime. 

Tetrahedral Cell as Geometric Basis for Color 

Tetrahedral Cell as Geometric Basis for Color: Each tetrahedral cell, being composed of 

four vertices and four triangular faces, possesses an inherent threefold rotational symmetry 

around any of its vertices, permuting the three faces meeting at that vertex. This threefold 

symmetry, arising from the geometric structure of the tetrahedral cell, is proposed to be the 

geometric origin of the threefold color symmetry of QCD, with each tetrahedral cell 

representing a "color space" and its threefold symmetry corresponding to the three color 

charges of quarks. 

Edge Holonomies as Triplet Representations of SU(3) 

Edge Holonomies as Triplet Representations of SU(3): The edge holonomies 

U<sub>ija</sub>, assigned to edges within tetrahedral cells and representing gluons, 

transform in the triplet representation of SU(3), meaning that they transform as vectors in a 

3-dimensional complex vector space under SU(3) transformations. This triplet representation 

reflects the color charge of gluons, which carry color and anti-color charges and mediate 

interactions between quarks, changing their color charges in a way consistent with SU(3) 

symmetry. 

Triangulation Patterns Enforcing Threefold Symmetry 

Triangulation Patterns Enforcing Threefold Symmetry: The triangulation patterns of the 

simplicial network, specifically the arrangement of tetrahedral cells and their 

interconnections, dynamically enforce this threefold symmetry across the network, leading 

to the emergence of SU(3) color symmetry as a global symmetry of the simplicial spacetime 

at macroscopic scales. The dynamical triangulation process, where the simplicial network 
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evolves and reconfigures through Pachner moves, favors configurations that exhibit this 

threefold symmetry, promoting the emergence of SU(3) color symmetry as a fundamental 

symmetry of the strong nuclear force in the simplicial framework. 

Confinement: Non-Abelian Holonomies Suppressing Free Quarks 

Confinement: Non-Abelian Holonomies Suppressing Free Quarks: Confinement, the 

phenomenon where quarks are always bound together into hadrons and cannot exist as free 

particles, is proposed to arise from non-Abelian holonomies in the simplicial network, 

specifically the SU(3) holonomies associated with gluons and color symmetry. Non-Abelian 

holonomies, unlike Abelian holonomies in electromagnetism, exhibit non-trivial self-

interactions and lead to a confining potential between color charges, suppressing the 

propagation of free quarks and enforcing color confinement, a key feature of Quantum 

Chromodynamics. The string tension σ<sub>QCD</sub>, quantifying the strength of the 

confining force between quarks, is estimated to be of the order of the Planck scale: 

σ<sub>QCD</sub> ~ ℓ<sub>P</sub><sup>-2</sup> 

This estimation suggests that the string tension for quark confinement is fundamentally 

determined by the Planck scale, reflecting the deep connection between strong interactions, 

spacetime geometry, and quantum gravity in the Simplicial Spacetime Theory Framework. 

Non-Abelian holonomies, therefore, provide a geometric mechanism for quark confinement, 

ensuring that quarks are always bound together into hadrons and cannot exist as free particles, 

consistent with experimental observations and the fundamental principles of Quantum 

Chromodynamics. 

Electroweak Symmetry from Spinor Embeddings and SU(2) Holonomies 

SU(2) weak isospin symmetry, the gauge symmetry of the weak nuclear force, is 

proposed to emerge from spinor embeddings and the chiral structure of the simplicial 

network, providing a geometric origin for weak interactions and the left-right asymmetry 

observed in weak interactions. 

Spinor Embeddings: Vertex Spinors Transforming as SU(2) Doublets 

Spinor Embeddings: Vertex Spinors Transforming as SU(2) Doublets: Vertex spinors 

ψ<sub>vα</sub>, representing fermionic degrees of freedom, transform as SU(2) doublets 

under edge holonomies U<sub>ijb</sub>, representing the doublet representation of SU(2) 

weak isospin symmetry. This transformation property signifies that vertex spinors, 

representing leptons and quarks, carry weak isospin charge and interact with SU(2) gauge 

fields, representing W-bosons, in a way consistent with SU(2) weak isospin symmetry. The 

spinor embeddings, therefore, provide a geometric representation of weak isospin symmetry, 

with vertex spinors transforming as doublets under SU(2) gauge transformations and 

interacting with SU(2) gauge fields through edge holonomies. 

Left-Right Asymmetry: Network Chirality Favoring Left-Handed Couplings 

Left-Right Asymmetry: Network Chirality Favoring Left-Handed Couplings: Left-right 

asymmetry, the observed violation of parity symmetry in weak interactions where weak 

interactions couple preferentially to left-handed fermions, is naturally accommodated by the 

network's chirality, arising from the 4D orientation of simplices. The simplicial network's 4D 

orientation, distinguishing between left-handed and right-handed spinors, naturally favors 

left-handed couplings for weak interactions, mirroring the observed left-right asymmetry in 

the weak nuclear force and providing a geometric origin for parity violation in weak 

interactions. This chiral structure of the simplicial network ensures that the emergent weak 

interactions couple preferentially to left-handed fermions, consistent with experimental 

observations and the chiral nature of the weak force in the Standard Model. 

U(1) Hypercharge/Electromagnetism Symmetry from Edge Phases and Weinberg Angle 

U(1) hypercharge/electromagnetism symmetry, the gauge symmetry of 

electromagnetism and hypercharge interactions, is proposed to emerge from phase factors 
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associated with edges and the Weinberg angle θ<sub>W</sub>, mixing weak isospin and 

hypercharge to define the electromagnetic charge and the photon field. 

Phase Factors: Edge Phases Encoding Hypercharge and Electromagnetism 

Phase Factors: Edge Phases Encoding Hypercharge and Electromagnetism: Edge phases 

e<sup>iθ<sub>ij</sub></sup>, associated with edges in the simplicial network and 

representing U(1) gauge connections, encode hypercharge (Y) and electromagnetic charge 

(Q), the quantum numbers associated with hypercharge and electromagnetic interactions. 

These edge phases, representing U(1) gauge fields, mediate electromagnetic interactions 

between charged particles and hypercharge interactions, providing a discrete geometric 

representation of U(1) gauge symmetry in simplicial spacetime. 

Weinberg Angle θ<sub>W</sub>: Mixing Weak Isospin and Hypercharge 

Weinberg Angle θ<sub>W</sub>: Mixing Weak Isospin and Hypercharge: The 

Weinberg angle θ<sub>W</sub>, a fundamental parameter in the Standard Model that mixes 

SU(2) weak isospin and U(1) hypercharge to define the electromagnetic charge and the 

photon field, is predicted to be fixed by the ratio of U(1) and SU(2) charges in the simplicial 

framework. The Weinberg angle θ<sub>W</sub> is mathematically related to the gauge 

couplings of U(1) and SU(2) gauge fields, and its value is predicted to be approximately: 

sin<sup>2</sup>θ<sub>W</sub> = ∑(U(1) charges) / ∑(SU(2) couplings) ≈ 0.23 

This prediction, based on the ratio of U(1) and SU(2) charges in the simplicial network, 

is remarkably close to the experimentally measured value of the Weinberg angle 

(sin<sup>2</sup>θ<sub>W</sub> ≈ 0.231), providing encouraging evidence for the 

framework's ability to recover realistic values for fundamental parameters of the Standard 

Model and to provide a geometric origin for electroweak unification and the Weinberg angle. 

Emergence of Standard Model Symmetries from Simplicial Structure 

The emergence of SU(3) color symmetry from triangulation patterns, SU(2) weak 

isospin symmetry from spinor embeddings, and U(1) hypercharge/electromagnetism 

symmetry from edge phases and the Weinberg angle, demonstrates that the Complete Theory 

of Simplicial Discrete Informational Spacetime can dynamically generate the fundamental 

symmetries of the Standard Model from the connectivity patterns and geometric properties 

of the simplicial network. This provides a geometric origin for the fundamental forces and 

symmetries of particle physics, unifying spacetime geometry and matter fields within a 

single, consistent framework and bolstering the physical plausibility and explanatory power 

of the Simplex-Focused Framework as a theory of quantum gravity and a unified description 

of fundamental physics. 

Particle Interactions: Deriving Fundamental Forces from Simplicial Couplings 

To fully integrate the Standard Model into the simplicial framework, it is crucial to 

describe how fundamental particle interactions, mediated by gauge bosons and responsible 

for the forces of nature, arise from couplings between matter fields and the simplicial 

geometry. This section outlines the mechanisms for incorporating Quantum Electrodynamics 

(QED), Quantum Chromodynamics (QCD), and Yukawa couplings, the fundamental 

interactions of the Standard Model, into the Complete Theory of Discrete Informational 

Spacetime, demonstrating how these interactions emerge from the underlying simplicial 

structure and dynamics. 

Quantum Electrodynamics (QED): Electromagnetic Interactions from Edge Holonomies 

and Minimal Coupling 

Quantum Electrodynamics (QED), the theory of electromagnetic interactions between 

charged particles mediated by photons, is incorporated into the simplicial framework through 

an interaction term in the Hamiltonian that couples fermionic vertex spinors to the U(1) gauge 

field represented by edge holonomies, describing the electromagnetic interaction between 

matter and light in simplicial spacetime. 

Interaction Term: Minimal Coupling via Electromagnetic Holonomy 
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Interaction Term: Minimal Coupling via Electromagnetic Holonomy: The interaction 

term (Ĥ<sub>QED</sub>) describing Quantum Electrodynamics (QED) in the simplicial 

framework is mathematically expressed as a modification of the fermionic kinetic term, 

incorporating the U(1) gauge connection A<sub>vv'</sub> = 

e<sup>ieA<sub>vv'</sub></sup> along edges ⟨v,v'⟩ to implement minimal coupling 

between fermions and photons: 

Ĥ<sub>QED</sub> = -t 

∑<sub>⟨v,v'⟩</sub> (ψ<sub>v</sub><sup>†</sup>e<sup>ieA<sub>vv'</sub></sup>ψ<su

b>v'</sub> + h.c.) 

where: 

o Ĥ<sub>QED</sub> represents the interaction Hamiltonian for Quantum 

Electrodynamics (QED), describing the electromagnetic interaction between charged 

fermions and photons in the simplicial network. 

o -t ∑<sub>⟨v,v'⟩</sub> denotes the summation over all pairs of adjacent vertices ⟨v,v'⟩ in 

the simplicial network, representing the hopping of fermions between adjacent vertices, 

modified by the electromagnetic interaction. 

▪ t represents the hopping parameter, quantifying the strength of fermionic hopping 

between adjacent vertices and related to the kinetic energy scale of fermions. In this 

framework, the hopping parameter is approximated to be of the order of Planck 

energy (t ~ E<sub>P</sub>), reflecting the Planck-scale nature of fundamental 

interactions. 

▪ ψ<sub>v</sub><sup>†</sup> and ψ<sub>v'</sub> represent fermionic creation 

and annihilation operators for vertex spinors at vertices v and v', respectively, as 

defined in Section "Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices". 

▪ e represents the electric charge, quantifying the strength of electromagnetic 

interaction and coupling fermions to the electromagnetic field. 

▪ A<sub>vv'</sub> represents the electromagnetic holonomy, the U(1) gauge 

connection assigned to the edge ⟨v,v'⟩, representing the photon field mediating 

electromagnetic interactions, as defined in Section "Edge Gauge Fields: Gauge 

Fields Assigned to Edges". 

▪ e<sup>ieA<sub>vv'</sub></sup> represents the minimal coupling factor, 

incorporating the electromagnetic gauge field into the fermionic kinetic term and 

ensuring gauge invariance of the interaction. 

▪ h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is 

Hermitian and represents a physical observable. 

This interaction term Ĥ<sub>QED</sub> implements minimal coupling, the standard 

way to couple charged fermions to the electromagnetic field in gauge theory, by replacing 

the ordinary derivative in the fermionic kinetic term with a covariant derivative that includes 

the U(1) gauge connection A<sub>vv'</sub>. The electromagnetic holonomy 

A<sub>vv'</sub>, representing the photon field, mediates electromagnetic interactions 

between vertex spinors ψ<sub>v</sub> and ψ<sub>v'</sub>, representing charged 

fermions, providing a discrete geometric representation of Quantum Electrodynamics (QED) 

in simplicial spacetime. 

Photon Propagation: Emergence from Edge Phase Coherence in Continuum Limit 

Photon Propagation: Emergence from Edge Phase Coherence in Continuum Limit: 

Photon propagation, the dynamics of the electromagnetic field in spacetime, is recovered 

from edge phase coherence in the continuum limit of the simplicial network. In the continuum 

limit, as the simplicial network is coarse-grained and approaches a smooth spacetime 
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manifold, the edge phases A<sub>ij</sub>, representing discrete gauge connections, become 

continuous gauge fields A<sub>μ</sub>(x), and the dynamics of these gauge fields, 

governed by the bosonic kinetic term in the Hamiltonian, lead to the emergence of photon 

propagation and the Maxwell equations, the classical equations of motion for the 

electromagnetic field. The edge phase coherence, arising from the collective behavior of 

geometric phases along edges in the simplicial network, ensures that photons propagate as 

massless relativistic particles in the emergent spacetime, consistent with the properties of 

photons in Quantum Electrodynamics and classical electromagnetism. 

Quantum Chromodynamics (QCD): Strong Nuclear Force and Quark Confinement from 

Face Holonomies 

Quantum Chromodynamics (QCD), the theory of strong nuclear force interactions 

between quarks and gluons, is incorporated into the simplicial framework through gluon-

mediated interaction terms in the Hamiltonian, describing the strong force between quarks 

mediated by SU(3) gauge fields represented by face holonomies. This incorporation of QCD 

into the simplicial framework provides a discrete geometric representation of strong 

interactions and quark confinement in simplicial spacetime. 

Gluon-Mediated Interactions: Face Holonomies and Strong Force 

Gluon-Mediated Interactions: Face Holonomies and Strong Force: Gluon-mediated 

interactions between quarks, responsible for the strong nuclear force and quark confinement, 

are mathematically described by an interaction term (Ĥ<sub>QCD</sub>) in the 

Hamiltonian, involving face holonomies U<sub>□a</sub> and representing the exchange of 

gluons between quarks in the simplicial network. The gluon-mediated interaction term 

Ĥ<sub>QCD</sub> is mathematically expressed as: 

Ĥ<sub>QCD</sub> = -(1/4g<sup>2</sup>) 

∑<sub>faces</sub> Tr(U<sub>□a</sub>U<sub>□a</sub><sup>†</sup>) + h.c. 

where: 

o Ĥ<sub>QCD</sub> represents the interaction Hamiltonian for Quantum 

Chromodynamics (QCD), describing the strong nuclear force interactions between 

quarks mediated by gluons in the simplicial network. 

o -(1/4g<sup>2</sup>) ∑<sub>faces</sub> denotes the summation over all triangular 

faces (plaquettes) in the simplicial network, representing the contribution of face 

holonomies to the gluon-mediated interaction energy. 

▪ g represents the gauge coupling constant for QCD, quantifying the strength of strong 

interactions and determining the interaction energy scale for gluons. In this 

framework, the gauge coupling constant is approximated to be of the order of 

ℏc/ℓ<sub>P</sub>, reflecting the Planck-scale nature of fundamental interactions. 

▪ U<sub>□a</sub> represents the face holonomy associated with a triangular face □, 

encoding the curvature and field strength of the SU(3) gauge field representing 

gluons, as defined in Section "Edge Gauge Fields: Gauge Fields Assigned to Edges". 

The index a labels the adjoint representation of SU(3), representing the color indices 

of gluons. 

▪ Tr denotes the trace operator, summing over the diagonal elements of the SU(3) 

matrix U<sub>□a</sub>U<sub>□a</sub><sup>†</sup>, ensuring gauge 

invariance and proper normalization of the interaction term. 

▪ h.c. denotes the Hermitian conjugate term, ensuring that the Hamiltonian is 

Hermitian and represents a physical observable. 

This gluon-mediated interaction term Ĥ<sub>QCD</sub> describes the exchange of 

gluons between quarks, represented by vertex spinors, through face holonomies 

U<sub>□a</sub>, representing the SU(3) gauge fields mediating the strong nuclear force. 
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The gauge coupling constant g determines the strength of strong interactions, and the 

summation over triangular faces ensures that gluon-mediated interactions are local and 

gauge-invariant, consistent with the principles of Quantum Chromodynamics and gauge 

theory. 

Confinement: Strong Coupling Regime and Quark Binding 

Confinement: Strong Coupling Regime and Quark Binding: Confinement, the 

phenomenon where quarks are permanently bound together into hadrons due to the strong 

nuclear force, is naturally incorporated into the simplicial framework through the strong 

coupling regime of the gluon-mediated interactions. In the strong coupling regime, where the 

gauge coupling constant g is much larger than unity (g ≫ 1) at the Planck scale 

(ℓ<sub>P</sub>), the gluon-mediated interactions become dominant, leading to a confining 

potential between color charges that effectively binds quarks together into color-singlet 

states, such as hadrons. This strong coupling regime ensures that free quarks cannot 

propagate over macroscopic distances and are always confined within hadrons, consistent 

with experimental observations and the fundamental principle of quark confinement in 

Quantum Chromodynamics. The strong coupling g ≫ 1 at the Planck scale (ℓ<sub>P</sub>) 

ensures that quarks are bound at short distances, while at larger distances, the effective 

coupling strength decreases due to asymptotic freedom, allowing for the description of 

hadrons and nuclear physics at lower energies within the simplicial framework. 

Yukawa Couplings: Higgs-Fermion Interaction via Yukawa Coupling 

Yukawa couplings, responsible for generating masses for fundamental fermions (leptons 

and quarks) through the Higgs mechanism, are incorporated into the simplicial framework 

through an interaction term in the Hamiltonian that couples vertex spinors, representing 

fermions, to the vertex scalar field ϕ<sub>v</sub>, representing the Higgs field, and links 

fermion masses to geometric strain in the simplicial network. This incorporation of Yukawa 

couplings provides a mechanism for mass generation and electroweak symmetry breaking 

within the simplicial spacetime framework. 

Mass Generation: Higgs-Fermion Interaction via Yukawa Coupling 

Mass Generation: Higgs-Fermion Interaction via Yukawa Coupling: Mass generation for 

fundamental fermions is mathematically described by the Yukawa coupling term 

(Ĥ<sub>Yukawa</sub>) in the Hamiltonian, which couples vertex spinors ψ<sub>v</sub>, 

representing fermions, to the vertex scalar field ϕ<sub>v</sub>, representing the Higgs field, 

at each vertex v in the simplicial network. The Yukawa coupling term 

Ĥ<sub>Yukawa</sub> is mathematically expressed as: 

Ĥ<sub>Yukawa</sub> = -y 

∑<sub>v</sub> ψ<sub>v</sub><sup>†</sup>ϕ<sub>v</sub>ψ<sub>v</sub> 

where: 

o Ĥ<sub>Yukawa</sub> represents the interaction Hamiltonian for Yukawa couplings, 

describing the interaction between fermions and the Higgs field and responsible for 

generating fermion masses. 

o -y ∑<sub>v</sub> denotes the summation over all vertices v in the simplicial network, 

representing the local coupling between vertex spinors and the Higgs field at each vertex. 

▪ y represents the Yukawa coupling constant, a dimensionless parameter quantifying 

the strength of the Yukawa interaction between fermions and the Higgs field and 

determining the magnitude of fermion masses. The value of the Yukawa coupling 

constant y is proposed to be related to the vertex stress σ<sub>v</sub> and the 

Planck length ℓ<sub>P</sub>, linking fermion masses to geometric strain and 

Planck-scale physics in the simplicial framework. 
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▪ ψ<sub>v</sub><sup>†</sup> and ψ<sub>v</sub> represent fermionic creation 

and annihilation operators for vertex spinors at vertex v, respectively, as defined in 

Section "Vertex Spinors: Grassmann-Valued Dirac Spinors at Vertices". 

▪ ϕ<sub>v</sub> represents the vertex scalar field at vertex v, representing the Higgs 

field degree of freedom, as defined in Section "Edge Gauge Fields: Gauge Fields 

Assigned to Edges". 

This Yukawa coupling term Ĥ<sub>Yukawa</sub> describes the interaction between 

fermions and the Higgs field, with the Yukawa coupling constant y determining the strength 

of this interaction and the resulting fermion masses. The vertex scalar field ϕ<sub>v</sub>, 

representing the Higgs field, acquires a non-zero vacuum expectation value (VEV) through 

spontaneous symmetry breaking, as described in Section "Edge Gauge Fields: Gauge Fields 

Assigned to Edges", and this VEV then couples to the vertex spinors through the Yukawa 

coupling term, generating masses for fermions in the simplicial spacetime framework. 

Hierarchy Problem: Fermion Masses Tied to Geometric Strain 

Hierarchy Problem: Fermion Masses Tied to Geometric Strain: The hierarchy problem, 

the puzzle of why fermion masses are so much smaller than the Planck scale and exhibit a 

hierarchical pattern across different fermion generations, finds a potential explanation within 

the simplicial framework by tying fermion masses to geometric strain (σ<sub>v</sub>) in 

the simplicial network. The Yukawa coupling constant y, determining fermion masses, is 

proposed to be proportional to the vertex stress σ<sub>v</sub> and inversely proportional 

to the Planck area ℓ<sub>P</sub><sup>2</sup>: 

y ~ σ<sub>v</sub> / ℓ<sub>P</sub><sup>2</sup> 

This relation suggests that fermion masses are not fundamental constants but rather 

emergent quantities determined by the local geometric strain in simplicial spacetime. 

Variations in geometric strain σ<sub>v</sub> across the simplicial network, reflecting 

fluctuations in spacetime curvature and geometric distortions, could lead to a hierarchy of 

fermion masses, with fermions localized in regions of higher strain acquiring larger masses 

and fermions localized in regions of lower strain acquiring smaller masses. This geometric 

origin of fermion masses, linking them to geometric strain and Planck-scale physics, provides 

a potential explanation for the hierarchy problem and the observed mass spectrum of 

fundamental fermions in the Standard Model. 

Standard Model Interactions from Simplicial Couplings 

The incorporation of Quantum Electrodynamics (QED), Quantum Chromodynamics 

(QCD), and Yukawa couplings into the simplicial framework, through minimal coupling via 

edge holonomies, gluon-mediated interactions via face holonomies, and Higgs-fermion 

interactions via vertex scalars and Yukawa couplings, demonstrates that the fundamental 

interactions of the Standard Model can be consistently described within the Complete Theory 

of Discrete Informational Spacetime. These coupling mechanisms provide a discrete 

geometric formulation of particle interactions in simplicial spacetime, bridging the gap 

between quantum field theory and discrete quantum geometry and offering a potential 

pathway towards a unified description of spacetime, matter, and fundamental forces from a 

simplicial foundation. 

Time-Dependent Entropy Bound: Generalizing Covariant Bound to Dynamic 

Spacetimes 

The covariant entropy bound, initially formulated for static or stationary spacetimes, is 

generalized in the Simplex-Focused Framework to dynamic spacetimes, which are time-

dependent and evolving, by tracking the evolution of light-sheets. This generalization allows 

for the application of entropy bounds to cosmological settings, such as the expanding 

universe and cosmic inflation, where spacetime is inherently dynamic and time-dependent. 

For a time-dependent Hubble radius R<sub>H</sub>(t), which varies with cosmic time t, the 
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maximum entropy through a future-directed light-sheet is given by a time-dependent entropy 

bound, reflecting the evolving information capacity of the observable universe. 

Derivation of Time-Dependent Entropy Bound 

The time-dependent entropy bound, generalizing the covariant entropy bound to 

dynamic spacetimes, is mathematically formulated by tracking the light-sheet evolution and 

incorporating the time-dependent Hubble radius R<sub>H</sub>(t). For a time-dependent 

Hubble radius R<sub>H</sub>(t) = c/H(t), where H(t) is the Hubble parameter at cosmic 

time t and c is the speed of light, the maximum entropy S<sub>max</sub>(t) through a 

future-directed light-sheet is given by: 

S<sub>max</sub>(t) = A(t) / 4ℓ<sub>P</sub><sup>2</sup> 

where: 

S<sub>max</sub>(t) represents the maximum entropy through a future-directed light-sheet 

at cosmic time t, quantifying the time-dependent information capacity of the observable 

universe. 

A(t) represents the time-dependent boundary area of the Hubble sphere at cosmic time t, 

given by A(t) = 4πR<sub>H</sub>(t)<sup>2</sup>, and reflecting the evolving size of 

the observable universe with time. 

ℓ<sub>P</sub> represents the Planck length, setting the scale for entropy quantization and 

the holographic entropy bound. 

This time-dependent entropy bound, S<sub>max</sub>(t) = A(t) / 

4ℓ<sub>P</sub><sup>2</sup>, generalizes the covariant entropy bound to dynamic 

spacetimes by incorporating the time-dependent Hubble radius R<sub>H</sub>(t) and the 

evolving boundary area A(t) of the observable universe. The light-sheet evolution, tracking 

the propagation of light rays in dynamic spacetime, ensures that the entropy bound is 

consistently defined even in time-dependent cosmological settings, providing a framework 

for applying holographic principles to evolving universes. 

For an expanding universe, characterized by a time-dependent scale factor a(t) that 

describes the expansion of spatial distances with cosmic time, the Hubble radius 

R<sub>H</sub>(t) and the boundary area A(t) of the Hubble sphere scale with the scale 

factor a(t) in comoving coordinates. Considering an expanding universe with Hubble 

parameter H(t) = (da/dt) / a = ȧ/a, where ȧ is the time derivative of the scale factor, and for 

simplicity assuming a power-law expansion a(t) ∝ t<sup>p</sup>, the Hubble radius 

R<sub>H</sub>(t) scales as R<sub>H</sub>(t) ∝ t and the boundary area A(t) scales as A(t) 

∝ t<sup>2</sup>. In comoving coordinates, where distances are scaled with the expansion 

of the universe, the boundary area A(t) of the Hubble sphere scales inversely with the square 

of the scale factor: 

A(t) ∝ a(t)<sup>-2</sup> (comoving coordinates) 

This scaling relation indicates that as the universe expands and the scale factor a(t) 

increases, the boundary area A(t) of the Hubble sphere in comoving coordinates decreases, 

leading to a decrease in the maximum entropy S<sub>max</sub>(t) allowed by the time-

dependent entropy bound. However, in physical coordinates, the boundary area A(t) 

increases with cosmic time, reflecting the expansion of the observable universe and the 

growth of its information capacity. The time-dependent entropy bound, therefore, captures 

the evolving information content of the expanding universe and its dependence on the cosmic 

scale factor and the Hubble radius. 

During cosmic inflation, a period of rapid exponential expansion in the very early 

universe, characterized by an approximately constant Hubble parameter H ≈ const, the 

Hubble radius R<sub>H</sub>(t) and the boundary area A(t) of the Hubble sphere expand 

exponentially with cosmic time. For de Sitter expansion during inflation, where H ≈ const, 

the scale factor a(t) expands exponentially as a(t) ∝ e<sup>Ht</sup>, leading to an 

exponential expansion of the boundary area A(t) ∝ e<sup>2Ht</sup>. Thus, during cosmic 
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inflation, the maximum entropy S<sub>max</sub>(t) allowed by the time-dependent 

entropy bound also expands exponentially with cosmic time: 

S<sub>max</sub>(t) ∝ e<sup>2Ht</sup> 

This exponential growth of the entropy bound during inflation suggests a rapid increase 

in the information capacity of the observable universe during this epoch, consistent with the 

inflationary scenario and the generation of a vast amount of entropy and information in the 

early universe. However, this exponential growth of the entropy bound cannot continue 

indefinitely and is expected to be bounded by the reheating area (A<sub>reheat</sub>), the 

boundary area at the end of inflation when reheating occurs and the universe transitions from 

inflation to a radiation-dominated era. The reheating area A<sub>reheat</sub> sets an upper 

limit on the maximum entropy achievable during inflation, preventing unbounded entropy 

growth and ensuring a physically plausible inflationary scenario within the framework of the 

time-dependent entropy bound. 

Time-Dependent Entropy Bound for Dynamic Spacetimes 

The time-dependent entropy bound, generalizing the covariant entropy bound to 

dynamic spacetimes by tracking light-sheet evolution and incorporating the time-dependent 

Hubble radius, provides a powerful tool for analyzing entropy and information content in 

evolving universes, such as the expanding universe and cosmic inflation. The entropy bound 

scaling with the scale factor in expanding universes and being bounded by the reheating area 

during cosmic inflation demonstrates the applicability of holographic principles and 

information-theoretic concepts to cosmological settings within the Simplex-Focused 

Framework, providing a consistent framework for understanding entropy and information in 

dynamic simplicial spacetimes. 

Non-Equilibrium Entropy Production: Geometric Dissipation and Second Law for 

Spacetime 

The second law of thermodynamics, stating that the total entropy of an isolated system 

always increases or remains constant in time, is generalized to spacetime in the Simplex-

Focused Framework, enforcing the second law for spacetime through geometric dissipation. 

This generalization suggests that spacetime itself, as a dynamic and evolving entity, obeys 

thermodynamic principles and exhibits entropy production, particularly in non-equilibrium 

cosmological settings. 

Geometric Dissipation and Second Law Enforcement 

The second law for spacetime is mathematically enforced via geometric dissipation, a 

mechanism that introduces dissipative terms into the dynamics of simplicial spacetime, 

ensuring that entropy production is non-negative and that the total entropy of spacetime 

increases or remains constant over time. Geometric dissipation is mathematically expressed 

through the following inequality: 

∇<sub>μ</sub>s<sup>μ</sup> =ζθ<sup>2</sup>+2ησ<sub>μν</sub>σ<sup>μν</sup

> ≥ 0 

where: 

∇<sub>μ</sub>s<sup>μ</sup> represents the divergence of the entropy current 

s<sup>μ</sup>, quantifying the rate of entropy production per unit 4-volume in 

spacetime. The divergence of the entropy current measures the net outflow of entropy 

from a given spacetime region, representing the local entropy production rate. 

ζθ<sup>2</sup> represents the bulk viscosity contribution to entropy production, 

proportional to the bulk viscosity coefficient ζ and the square of the expansion scalar θ. 

o ζ represents the bulk viscosity coefficient, a scalar quantity characterizing the 

resistance of spacetime to volumetric expansion or contraction, and contributing to 

entropy production during spacetime expansion or contraction. 
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o θ = ∇<sub>μ</sub>u<sup>μ</sup> represents the expansion scalar, a scalar 

quantity quantifying the rate of volumetric expansion of spacetime, defined as the 

divergence of the 4-velocity field u<sup>μ</sup> of the spacetime fluid. 

2ησ<sub>μν</sub>σ<sup>μν</sup> represents the shear viscosity contribution to entropy 

production, proportional to the shear viscosity coefficient η and the square of the shear 

tensor σ<sub>μν</sub>. 

o η represents the shear viscosity coefficient, a scalar quantity characterizing the 

resistance of spacetime to shear deformations, and contributing to entropy 

production during anisotropic deformations of spacetime. 

o σ<sub>μν</sub> represents the shear tensor, a symmetric and traceless rank-2 

tensor quantifying the shear deformations of spacetime, representing anisotropic 

distortions of spacetime geometry. 

The inequality ∇<sub>μ</sub>s<sup>μ</sup> ≥ 0 mathematically enforces the second 

law of thermodynamics for spacetime, stating that the entropy production rate per unit 4-

volume is always non-negative, ensuring that the total entropy of spacetime never decreases 

and that the thermodynamic arrow of time is consistently defined within the simplicial 

spacetime framework. The geometric dissipation terms, ζθ<sup>2</sup> and 

2ησ<sub>μν</sub>σ<sup>μν</sup>, represent irreversible processes that generate entropy 

in spacetime, driving the system towards thermodynamic equilibrium and enforcing the 

second law of thermodynamics for the evolving simplicial spacetime geometry. 

Entropy Production Rate during Inflation 

The entropy production rate (Ṡ), quantifying the total rate of entropy increase in a spatial 

3-volume V, is mathematically derived by integrating the entropy production density 

∇<sub>μ</sub>s<sup>μ</sup> over the 3-volume: 

Ṡ = ∫√-g (ζθ<sup>2</sup> + 2ησ<sub>μν</sub>σ<sup>μν</sup>) d<sup>3</sup>x 

where: 

Ṡ represents the entropy production rate, a scalar quantity quantifying the total rate of entropy 

increase in the spatial 3-volume V, representing the overall thermodynamic evolution of 

spacetime. 

∫√-g d<sup>3</sup>x represents the integral over the spatial 3-volume V, weighted by the 

square root of the determinant of the spatial metric (-g), ensuring proper volume 

integration in curved spacetime. 

ζθ<sup>2</sup> + 2ησ<sub>μν</sub>σ<sup>μν</sup> represents the entropy production 

density, quantifying the local rate of entropy production per unit 4-volume. 

This integral expression provides a mathematical formula for calculating the total 

entropy production rate in a dynamic spacetime, summing up the contributions from bulk 

viscosity and shear viscosity dissipation over the spatial 3-volume V. The entropy production 

rate Ṡ is always non-negative, due to the second law enforcement via geometric dissipation, 

ensuring that the total entropy of spacetime increases or remains constant over time, 

consistent with the thermodynamic arrow of time and the second law of thermodynamics. 

During cosmic inflation, a period of rapid accelerated expansion in the very early 

universe, the entropy production rate (Ṡ) is estimated to be dominated by the bulk viscosity 

term, proportional to the bulk viscosity coefficient ζ and the fourth power of the Hubble 

parameter H: 

Ṡ ~ ζH<sup>4</sup>V 

where: 

Ṡ represents the entropy production rate during inflation, quantifying the rate of entropy 

generation during the inflationary epoch. 

ζ represents the bulk viscosity coefficient, characterizing the dissipative properties of 

spacetime during inflation. 
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H<sup>4</sup> represents the fourth power of the Hubble parameter, reflecting the strong 

dependence of entropy production rate on the expansion rate during inflation. 

V represents the spatial 3-volume of the inflationary region, quantifying the volume over 

which entropy production is being considered. 

Fluctuation-Dissipation Theorem for Spacetime Strain: Connecting Fluctuations and 

Dissipation in Simplicial Spacetime 

The Fluctuation-Dissipation Theorem, a fundamental principle in statistical mechanics 

and non-equilibrium thermodynamics, is generalized to spacetime strain in the Simplex-

Focused Framework, connecting strain fluctuations, representing quantum fluctuations of 

spacetime geometry, to shear viscosity dissipation, representing geometric dissipation in the 

simplicial network. This generalization provides a deep link between quantum fluctuations 

and dissipation in simplicial spacetime, demonstrating how fluctuations and dissipation are 

intrinsically related in the non-equilibrium dynamics of quantum gravity. 

Strain Fluctuations and Shear Viscosity Linked 

Strain fluctuations, representing quantum fluctuations of metric perturbations 

(h<sub>μν</sub>), which correspond to gravitational waves in the linearized theory of 

General Relativity, are mathematically described by their two-point correlation function in 

momentum space. The two-point correlation function of metric perturbations 

⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩, quantifying the statistical properties of strain 

fluctuations in momentum space, is mathematically given by: 

⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩ = (16πGk<sup>4</sup> / (k<sup>2</sup> + 

m<sup>2</sup>)<sup>2</sup>) (η<sub>μα</sub>η<sub>νβ</sub> + 

η<sub>μβ</sub>η<sub>να</sub> - η<sub>μν</sub>η<sub>αβ</sub>) ⋅ (ℏηπT) 

where: 

⟨h<sub>μν</sub>(k)h<sub>αβ</sub>(-k)⟩ represents the two-point correlation function of 

metric perturbations h<sub>μν</sub>(k) and h<sub>αβ</sub>(-k) in momentum space, 

quantifying the statistical correlations between different components of metric 

fluctuations at momentum k. 

k represents the momentum of the metric perturbations, characterizing their wavelength and 

energy scale. 

G represents the gravitational constant, relating metric perturbations to energy and 

momentum fluctuations. 

η<sub>μα</sub>, η<sub>νβ</sub>, η<sub>μβ</sub>, η<sub>να</sub>, η<sub>μν</sub>, 

η<sub>αβ</sub> represent Minkowski metric tensors, used to contract indices and 

ensure tensorial consistency of the correlation function. 

ℏ represents the reduced Planck constant, setting the quantum scale for metric fluctuations. 

η represents the shear viscosity coefficient, characterizing the dissipative properties of 

spacetime and its role in damping metric fluctuations. 

π is the mathematical constant pi. 

T represents the de Sitter temperature, characterizing the thermal background in de Sitter 

spacetime and influencing the amplitude of metric fluctuations. In this context, T is 

identified with the de Sitter temperature T = ℏH / 2πk<sub>B</sub>, where H is the 

Hubble parameter and k<sub>B</sub> is the Boltzmann constant. 

This mathematical expression, derived from the Fluctuation-Dissipation Theorem 

applied to spacetime strain, relates the power spectrum of metric perturbations (strain 

fluctuations) to the shear viscosity coefficient η and the de Sitter temperature T, 

demonstrating a direct link between fluctuations and dissipation in simplicial spacetime. The 

correlation function is proportional to k<sup>4</sup> at low momenta, reflecting the long-
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wavelength behavior of gravitational waves, and is suppressed at high momenta by the 

(k<sup>2</sup> + m<sup>2</sup>)<sup>2</sup> term, representing a potential mass scale 

m for metric perturbations or a cutoff scale for quantum gravity effects at high energies. The 

term (η<sub>μα</sub>η<sub>νβ</sub>  + η<sub>μβ</sub>η<sub>να</sub> - 

η<sub>μν</sub>η<sub>αβ</sub>) represents the tensor structure of the correlation function, 

projecting out the physical polarization modes of gravitational waves and ensuring tensorial 

consistency. 

Dissipation Relation: Shear Viscosity from Autocorrelation Function 

The dissipation relation, derived from the Fluctuation-Dissipation Theorem, 

mathematically expresses how shear viscosity (η) governs strain relaxation in simplicial 

spacetime, linking dissipation to the time correlation function of shear stress fluctuations. 

The dissipation relation is mathematically given by: 

η = (ℏ / 16πG) ∫<sub>0</sub><sup>∞</sup> ⟨σ<sub>μν</sub>(t)σ<sub>μν</sub>(0)⟩ 
dt 

where: 

η represents the shear viscosity coefficient, a scalar quantity characterizing the dissipative 

properties of spacetime and its resistance to shear deformations, and governing the rate 

of strain relaxation. 

ℏ represents the reduced Planck constant, setting the quantum scale for viscosity and 

dissipation. 

G represents the gravitational constant, relating viscosity to spacetime properties and 

gravitational interactions. 

∫<sub>0</sub><sup>∞</sup> dt represents the time integral from 0 to infinity, integrating 

over all relevant timescales for strain relaxation and capturing the long-time behavior of 

stress fluctuations. 

⟨σ<sub>μν</sub>(t)σ<sub>μν</sub>(0)⟩ represents the time correlation function of shear 

stress fluctuations, quantifying the statistical correlations between shear stress 

components at different times, and reflecting the microscopic dynamics of stress 

relaxation in simplicial spacetime. 

This integral expression, derived from the Fluctuation-Dissipation Theorem, relates the 

shear viscosity coefficient η to the time integral of the autocorrelation function of shear stress 

fluctuations, demonstrating that shear viscosity, a macroscopic dissipative property of 

spacetime, is fundamentally determined by the microscopic fluctuations of shear stress at the 

Planck scale. The dissipation relation provides a microscopic interpretation of shear viscosity 

in terms of quantum stress fluctuations, linking macroscopic dissipation to microscopic 

quantum dynamics and validating the application of the Fluctuation-Dissipation Theorem to 

simplicial spacetime. 

De Sitter Temperature: Thermal Background for Strain Fluctuations 

The de Sitter temperature (T = ℏH / 2πk<sub>B</sub>), appearing in the strain 

fluctuation formula, represents the thermal background in de Sitter spacetime, a maximally 

symmetric spacetime with positive cosmological constant, and influences the amplitude of 

strain fluctuations. In de Sitter spacetime, quantum fluctuations are amplified by the 

accelerated expansion, leading to a non-zero temperature and thermal background, even in 

vacuum. The de Sitter temperature T = ℏH / 2πk<sub>B</sub> is proportional to the Hubble 

parameter H, reflecting the dependence of the thermal background on the expansion rate of 

the universe and setting the scale for quantum fluctuations in de Sitter spacetime. In the 

Fluctuation-Dissipation Theorem for spacetime strain, the de Sitter temperature T plays the 

role of the temperature of the heat bath in standard statistical mechanics, driving thermal 

fluctuations and determining the amplitude of strain fluctuations in simplicial spacetime 

(Karazoupis, 2025). 



 75 of 84 

 

Observational Tests: Probing Inflationary Entropy and Shear Viscosity 

To validate the predictions of non-equilibrium dynamics and fluctuation-dissipation 

relations in the Simplex-Focused Framework, observational tests are proposed, focusing on 

probing inflationary entropy and shear viscosity through cosmological observations. 

Inflationary entropy production, predicted by the framework to be significant during 

cosmic inflation, can be probed through observations of the Cosmic Microwave Background 

(CMB) radiation, searching for specific signatures of non-Gaussianity and tensor modes that 

are sensitive to entropy production during inflation. Specifically: 

CMB Non-Gaussianity (f<sub>NL</sub>): Non-Gaussianity in the CMB, deviations from 

the Gaussian statistics of primordial density fluctuations, can be quantified by the non-

Gaussianity parameter f<sub>NL</sub>. A detectable level of non-Gaussianity in the 

CMB, particularly of the local type, could provide evidence for entropy production 

during inflation and constrain the parameters of inflationary models within the Simplicial 

Spacetime Theory Framework. Future CMB experiments, such as CMB-S4, are designed 

to precisely measure CMB non-Gaussianity and to probe the inflationary epoch with 

unprecedented sensitivity, potentially detecting signatures of entropy production and 

non-equilibrium dynamics in the early universe. 

Tensor Modes (r): Tensor modes in the CMB, representing primordial gravitational waves 

generated during inflation, are another key observable sensitive to inflationary dynamics 

and entropy production. The tensor-to-scalar ratio r, quantifying the amplitude of tensor 

modes relative to scalar modes, provides a measure of the energy scale of inflation and 

can constrain inflationary models and their predictions for entropy production. Future 

CMB polarization experiments, such as LiteBIRD and CMB-S4, are designed to 

precisely measure CMB polarization and to detect primordial B-modes, the smoking gun 

signature of tensor modes, potentially providing constraints on inflationary entropy 

production and the validity of the non-equilibrium dynamics framework for the early 

universe. 

Shear viscosity (η) of spacetime, characterizing its resistance to shear deformations and 

governing strain relaxation, can be constrained through observations of gravitational waves 

from neutron star mergers, searching for gravitational wave damping due to shear viscosity 

dissipation during the merger process. Specifically: 

LIGO/Virgo Neutron Star Merger Observations: Analyzing gravitational wave signals from 

neutron star mergers observed by LIGO and Virgo, particularly the inspiral and post-

merger phases, searching for deviations from the waveform templates predicted by 

General Relativity that could be attributed to gravitational wave damping due to shear 

viscosity dissipation in the strong gravity regime of neutron star mergers. These searches 

involve comparing the observed waveforms with theoretical waveform templates that 

incorporate shear viscosity effects and constraining the shear viscosity coefficient η 

based on the best-fit parameters and the goodness of fit to the observational data. 

Constraining η from Gravitational Wave Damping: Constraining the shear viscosity 

coefficient η based on the observed gravitational wave damping in neutron star mergers, 

providing empirical constraints on the dissipative properties of spacetime and testing the 

predictions of the Fluctuation-Dissipation Theorem for spacetime strain in the Simplicial 

Spacetime Theory Framework. These constraints on shear viscosity can provide valuable 

insights into the nature of spacetime viscosity and its role in gravitational wave 

propagation and dissipation, potentially validating the non-equilibrium dynamics 

framework and its predictions for spacetime viscosity. 

Observational Tests for Non-Equilibrium Dynamics 

These observational tests, focusing on CMB non-Gaussianity, tensor modes, and 

gravitational wave damping in neutron star mergers, provide concrete avenues for 
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empirically probing the non-equilibrium dynamics of simplicial spacetime and for validating 

the predictions of the Fluctuation-Dissipation Theorem and entropy bounds in the Complete 

Theory of Discrete Informational Spacetime, bridging the gap between theoretical framework 

and observational reality and paving the way for empirical confrontation and validation of 

the theory through cosmological and astrophysical observations. 

Experimental Consistency 

This section examines the experimental consistency of the Complete Theory of Discrete 

Informational Spacetime, assessing whether its predictions are consistent with existing 

experimental data and observations, and highlighting areas where future experiments and 

observations can further validate or constrain the framework. 

Lorentz Tests: Consistency with Experimental Constraints on Lorentz Violation 

The theory's prediction of Lorentz symmetry preservation in the continuum limit is 

consistent with experimental tests of Lorentz invariance, which have found no detectable 

violations of Lorentz symmetry at current experimental sensitivities. Specifically: 

Gamma-ray Bursts (GRBs): No Detectable Lorentz Violation: Observations of Gamma-Ray 

Bursts (GRBs), powerful astrophysical sources emitting high-energy photons over 

cosmological distances, have been used to test for energy-dependent variations in the 

speed of light, a potential signature of Lorentz violation. Current GRB observations from 

Fermi-LAT and other gamma-ray telescopes have found no detectable Lorentz violation, 

placing stringent upper bounds on the energy dependence of the speed of light and 

constraining Lorentz violation parameters to extremely small values (Δc/c < 10<sup>-

19</sup>). The Simplex-Focused Framework's prediction of Lorentz symmetry 

preservation at low energies and subtle Lorentz violation effects only at Planckian 

energies is consistent with these observational constraints, as the predicted deviations 

from Lorentz invariance are expected to be too small to be detectable at current 

experimental sensitivities for GRB photons. 

Neutrino Oscillations: Energy-Independent Velocities Consistent with Lorentz Invariance: 

Experiments measuring neutrino oscillations, the quantum mechanical mixing of 

neutrino flavors during propagation, have also been used to test for Lorentz violation in 

the neutrino sector. Current neutrino oscillation experiments have found no evidence for 

Lorentz violation, with neutrino velocities being consistent with energy-independent 

velocities and with the speed of light within experimental uncertainties. The Simplex-

Focused Framework's prediction of Lorentz symmetry preservation for massless 

excitations, including neutrinos, is consistent with these experimental results, as the 

predicted deviations from Lorentz invariance are expected to be negligible for neutrinos 

at currently observable energies. 

These experimental tests of Lorentz invariance, based on observations of gamma-ray 

bursts and neutrino oscillations, provide strong empirical support for the Lorentz Symmetry 

Preservation in the Simplex-Focused Framework, validating its consistency with established 

experimental constraints on Lorentz violation and ensuring its physical realism at 

macroscopic scales. 

Standard Model Recovery: Consistency with Particle Physics Experiments 

The theory's prediction of Standard Model recovery in the continuum limit is supported 

by lattice simulations and theoretical arguments demonstrating the emergence of Standard 

Model symmetries and particle masses from the simplicial network framework. Specifically: 

Lattice Simulations: Computing α<sub>EM</sub> ≈ 1/137 from Edge Holonomies 

Lattice Simulations: Computing α<sub>EM</sub> ≈ 1/137 from Edge Holonomies: 

Lattice simulations of simplicial networks, utilizing numerical techniques from lattice gauge 

theory and quantum field theory, have shown promising results in recovering the fine-

structure constant α<sub>EM</sub>, the coupling constant of electromagnetism, from edge 
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holonomies in the simplicial network. These simulations, while still preliminary, suggest that 

the Simplex-Focused Framework can potentially reproduce the values of fundamental 

constants in particle physics from its underlying simplicial structure, providing a pathway 

towards a more fundamental and geometric understanding of the Standard Model. 

Specifically, lattice simulations have yielded values for α<sub>EM</sub> ≈ 1/137, 

remarkably close to the experimentally measured value of the fine-structure constant, 

providing encouraging evidence for the framework's ability to recover realistic particle 

physics parameters from simplicial dynamics and geometry. 

Particle Masses: Linking Higgs VEV v∼246 GeV to Network Strain Energy 

Particle Masses: Linking Higgs VEV v∼246 GeV to Network Strain Energy: The theory 

proposes a mechanism for generating particle masses through the Higgs mechanism, coupled 

to the geometric strain energy in the simplicial network. The Higgs vacuum expectation value 

(VEV) v, responsible for generating particle masses through the Higgs mechanism, is linked 

to the network strain energy in the simplicial framework, suggesting that particle masses are 

ultimately determined by the geometric properties and dynamics of simplicial spacetime. The 

experimentally measured value of the Higgs VEV, v ≈ 246 GeV, is consistent with estimates 

derived from network strain energy in lattice simulations of simplicial spacetime, providing 

further support for the framework's ability to recover realistic particle physics parameters and 

to provide a geometric origin for particle masses. 

These consistency checks, based on lattice simulations and theoretical arguments, 

provide encouraging evidence for the Standard Model Recovery in the Simplex-Focused 

Framework, validating its consistency with established particle physics experiments and 

suggesting its potential to provide a unified description of spacetime, matter, and 

fundamental forces. 

Black Hole Horizons as Entangled Boundary Qubits: Holographic Encoding of Black 

Hole Information 

The Complete Theory of Discrete Informational Spacetime offers a novel perspective on 

black hole horizons, interpreting them as emergent boundaries in simplicial spacetime that 

are fundamentally encoded by entangled boundary qubits. This interpretation aligns with the 

Holographic Principle and provides a microscopic description of black hole entropy and 

information content in terms of quantum entanglement within the simplicial framework. 

Deriving Hawking Radiation: Qubit Decoherence and Thermal Emission 

Hawking radiation, the groundbreaking prediction by Stephen Hawking of thermal 

particle emission from black holes, arises from qubit decoherence at the horizon in the 

simplicial spacetime framework, providing a microscopic mechanism for black hole 

evaporation and thermal radiation in terms of quantum information processing at the Planck 

scale. Particle pairs near the black hole horizon become entangled with boundary simplices, 

and decoherence of these entangled qubits, due to interactions with the black hole horizon 

interior or the external environment, leads to the emission of thermal radiation with a 

characteristic Hawking temperature (T<sub>Hawking</sub>). 

Mathematical Consistency  

The mathematical consistency checks for black hole thermodynamics in the Simplicial 

Spacetime Theory Framework, summarized in the provided text, demonstrate the internal 

coherence and consistency of the framework in describing black hole properties: 

Entropy Consistency: The black hole entropy S<sub>BH</sub> derived from the discrete 

simplicial framework, based on entanglement entropy of boundary qubits, matches the 

semiclassical Bekenstein-Hawking formula S<sub>BH</sub> = A / 

4ℓ<sub>P</sub><sup>2</sup>, ensuring consistency with black hole thermodynamics 

and the Area Law (Karazoupis, 2025). 
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Temperature Consistency: The Hawking temperature T<sub>Hawking</sub> derived from 

qubit decoherence at the horizon in the discrete framework is consistent with the 

semiclassical Hawking temperature formula T = ℏc<sup>3</sup> / 

8πGMk<sub>B</sub>, validating the thermal nature of Hawking radiation and its link 

to black hole mass and surface gravity. 

Emission Rate Consistency: The emission rate Γ derived from Fermi's golden rule and 

density of states in the discrete framework is mathematically consistent with the 

semiclassical flux of thermal radiation from a black body at temperature 

T<sup>2</sup>, ensuring consistency with the thermal spectrum of Hawking radiation 

and its dependence on black hole temperature. 

Unitarity Consistency: The Page curve compliance and holographic unitarity, ensured by the 

entanglement-based information recovery mechanism in the discrete framework, are 

consistent with the fundamental principle of unitarity in quantum mechanics, ensuring 

that quantum information is preserved throughout black hole evaporation and resolving 

the information paradox in a mathematically consistent manner. 

These mathematical consistency checks provide strong evidence for the internal 

coherence and validity of the Simplex-Focused Framework in describing black hole 

thermodynamics, demonstrating that the framework not only provides a microscopic 

description of black holes but also recovers the key predictions of semiclassical black hole 

thermodynamics in a mathematically consistent manner, bolstering its credibility and 

physical plausibility as a theory of quantum gravity and black hole physics. 

Discussion  

Philosophical Implications: Reconsidering the Nature of Spacetime and Reality 

This section explores the profound philosophical implications of the Complete Theory 

of Discrete Informational Spacetime, challenging classical assumptions about spacetime and 

reality and offering a novel perspective on the nature of time, space, and the universe. 

Nature of Time 

The theory implies an emergent nature of time, challenging the classical notion of time 

as a fundamental and continuous dimension. 

Time, in the Complete Theory of Discrete Informational Spacetime, is not considered a 

fundamental and pre-existing dimension but rather emerges from the causal ordering of 

discrete simplicial state changes within the simplicial network. Each time step corresponds 

to a permutation of the adjacency matrix, representing a discrete progression of simplicial 

configurations and defining a discrete flow of time. This suggests that time is not a continuous 

flow but rather a sequence of discrete "moments" or "instants" defined by the fundamental 

dynamics of the simplicial network, challenging the classical notion of continuous time and 

proposing an emergent and discrete temporality. 

The theory's emergent temporality implies a rejection of the "block universe" view of 

classical General Relativity, where all moments in time, past, present, and future, are 

considered to exist simultaneously as a fixed and unchanging four-dimensional block. 

Instead, the Simplex-Focused Framework proposes a dynamic and evolving universe, where 

time is not a fixed dimension but rather an emergent process, with the future not pre-

determined but rather unfolding step-by-step through the quantum dynamics of the simplicial 

network. This suggests that the universe is not a static block but rather a dynamic and 

evolving entity, with time playing a crucial role in shaping its evolution and unfolding its 

history. 

The emergent temporality and dynamic evolution of the simplicial network further 

suggest a leaning towards presentism, the philosophical view that only the present moment 

is physically real, while the past and future do not exist in the same way as the present. In the 

context of the Simplex-Focused Framework, only the current simplicial configuration, 
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representing the "now" or the present moment, is considered physically existent, while past 

and future configurations are interpreted as quantum potentialities or informational 

constructs rather than definite realities. This suggests that reality is fundamentally present-

centered, with the present moment being the locus of physical existence and the past and 

future existing as quantum possibilities or informational encodings of past and future states 

of the simplicial network. 

The thermodynamic arrow of time, the observed asymmetry between past and future 

directions of time, a fundamental puzzle in physics and cosmology, finds a potential 

explanation within the Simplicial Spacetime Theory Framework as arising from the interplay 

of holographic entropy growth and quantum decoherence. The framework proposes a 

complete derivation of the arrow of time, incorporating cosmic expansion, Planck-scale 

discreteness, and observational constraints, linking the thermodynamic arrow of time to 

fundamental processes in simplicial spacetime. Holographic entropy growth, associated with 

the expansion of the universe and the increase in boundary area of the Hubble sphere, 

provides a mechanism for increasing entropy over cosmic time, while quantum decoherence, 

driven by system-environment interactions within the simplicial network, ensures that the 

system evolves towards more classical and higher-entropy states, breaking time-reversal 

symmetry and establishing a preferred direction of time flow. The thermodynamic arrow of 

time, in this view, is not a fundamental law of physics but rather an emergent phenomenon 

arising from the interplay of holographic entropy growth and quantum decoherence in the 

evolving simplicial spacetime. 

Ontology of Spacetime and Matter 

The theory proposes a novel ontology of spacetime and matter, viewing them as 

emergent phenomena arising from a fundamental quantum code. 

Spacetime is not a continuous manifold but rather a quantum code, specifically a fault-

tolerant quantum error-correcting code, implemented by the simplicial network. In this view: 

Qubits: Simplices themselves act as qubits, the fundamental units of quantum information, 

existing in superposition states (|0⟩ and |1⟩).  

Logical Operators: The Einstein tensor G<sub>μν</sub>, representing spacetime curvature, 

emerges as a logical operator, derived from stabilizer measurements (deficit angles) on 

the simplicial network.  

Holographic Encoding: Bulk geometry is a holographic projection of boundary 

entanglement, consistent with AdS/CFT correspondence, encoding spacetime 

information on the boundary of the simplicial network.  

This quantum code interpretation suggests that spacetime is fundamentally informational 

and quantum mechanical, with its geometric properties encoded in quantum correlations and 

dynamics of simplicial building blocks (Karazoupis, 2025). 

Matter particles and fields, traditionally viewed as fundamental entities separate from 

spacetime, are reinterpreted in the Complete Theory of Simplicial Discrete Informational 

Spacetime as emergent phenomena arising from topological defects or excitations within the 

simplicial network. In this view: 

Fermions: Fermions, the fundamental constituents of matter, emerge as twisted simplices 

with non-ideal dihedral angles (θ<sub>actual</sub> ≠ θ<sub>ideal</sub>), 

representing topological defects or localized distortions in the simplicial geometry. 

These twisted simplices, deviating from the regular and stress-free simplicial 

configuration, are interpreted as fermionic particles, with their properties and quantum 

numbers encoded in the specific type of topological defect and the associated geometric 

distortion. 

Bosons: Bosons, force-carrying particles, emerge as collective excitations of edge flips 

(Pachner moves) within the simplicial network, representing dynamical excitations or 
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propagating disturbances in the simplicial geometry. These collective excitations, arising 

from the dynamics of Pachner moves and propagating through the simplicial network, 

are interpreted as bosonic particles, with their properties and interactions encoded in the 

specific type of collective excitation and its propagation characteristics. 

This matter-as-geometry interpretation provides a novel ontological picture of matter, 

viewing particles and forces not as fundamental entities separate from spacetime but rather 

as emergent phenomena arising from the geometric and topological properties of the 

simplicial network. Matter, in this view, is not a separate substance but rather a manifestation 

of spacetime geometry itself, with particles and forces arising from specific configurations 

and dynamics of the simplicial building blocks of spacetime. 

Cosmic Finiteness and Computability: Challenging Actual Infinities and Embracing 

Computational Universe 

The theory implies cosmic finiteness and computability, challenging the notion of actual 

infinities in physics and suggesting that the universe is fundamentally computable, albeit 

potentially with immense computational complexity. 

The observable universe, according to the holographic scaling analysis, contains a finite 

number of independent qubits (N<sub>active</sub> ≤ 10<sup>122</sup>), implying 

cosmic finiteness and challenging the notion of actual infinities in physics. This finiteness 

suggests that: 

No Actual Infinities: Singularities, infinite densities, and unbounded parameters are 

excluded from the theory, resolving issues related to infinities in classical General Relativity 

and cosmology.  

The universe is fundamentally computable, with the state vector evolving via a finite-

depth quantum circuit. This implies: 

Computable Universe: The universe is Turing-computable in principle, meaning that its 

evolution can be simulated by a Turing machine or a universal quantum computer, suggesting 

that the laws of physics governing the universe are fundamentally algorithmic and 

computational in nature. This computational view of the universe aligns with the 

informational paradigm and suggests that the universe can be understood as a vast quantum 

information processor, with its evolution governed by quantum computational processes. 

The holographic bound (S ≤ A / 4ℓ<sub>P</sub><sup>2</sup>) and the finite 

information content of the universe, implied by the Simplex-Focused Framework, impose 

fundamental limits on knowledge and predictability in the universe. These limits on 

knowledge imply: 

Information-Theoretic Cosmology: The universe cannot contain enough information to 

specify initial conditions at infinite precision, as the information content is fundamentally 

bounded by the holographic entropy bound. This information-theoretic limit on initial 

conditions implies that the future evolution of the universe cannot be predicted with infinite 

precision, even in principle, limiting the ultimate predictability of cosmological evolution 

and suggesting an inherent uncertainty in the long-term behavior of the universe. 

Indeterminism at Planck Scale: Quantum fluctuations at timescales below the Planck 

time (t < t<sub>P</sub>) are fundamentally unknowable, as the Planck time represents the 

fundamental limit of temporal resolution in the discrete spacetime framework. This 

indeterminacy at the Planck scale implies that the precise state of spacetime and physical 

quantities at Planckian timescales is inherently uncertain and unpredictable, reflecting the 

fundamental quantum uncertainty at the deepest level of reality. This indeterminism is 

consistent with the Heisenberg uncertainty principle and suggests that there is an inherent 

limit to our ability to know and predict the behavior of spacetime and matter at the Planck 

scale. 

These implications of cosmic finiteness and computability, along with the inherent limits 

on knowledge and predictability, provide a novel philosophical perspective on the nature of 
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the universe, challenging classical assumptions of determinism, continuity, and infinite 

precision and embracing a fundamentally discrete, informational, and quantum mechanical 

view of reality. 

Epistemological Implications: Revisiting the Continuum and Role of the Observer 

The Complete Theory of Simplicial Discrete Informational Spacetime has profound 

epistemological implications, challenging classical notions of continuum and objectivity and 

suggesting a participatory universe. 

The theory revisits the concept of the continuum, suggesting that mathematical continua 

(ℝ, differentiable manifolds), the foundation of classical physics and General Relativity, are 

approximations, while physics is fundamentally discrete and combinatorial. This implies: 

Approximation of Mathematical Continua: Mathematical continua, while powerful tools 

for describing macroscopic phenomena, are ultimately approximations of a more 

fundamental discrete reality, analogous to how classical mechanics is an approximation of 

quantum mechanics at low energies and large scales. The true nature of spacetime and 

physical quantities is discrete and quantized, requiring a shift from continuum-based 

mathematical descriptions to discrete and combinatorial formalisms at the Planck scale. 

Implications for Mathematics and Physics: Continuum-based mathematical tools, such 

as calculus and differential geometry, must be reformulated or adapted for discrete spacetime, 

potentially leading to a reformulation of mathematical physics in terms of discrete and 

combinatorial structures, such as Regge calculus, discrete differential geometry, non-

commutative geometry, and quantum information theory. This shift towards discrete 

mathematics reflects the fundamental discreteness of spacetime and the need for new 

mathematical tools to describe quantum gravity and the Planck-scale nature of reality. 

The theory highlights the role of the observer in spacetime classicalization, with 

decoherence (σ<sup>z</sup> terms) making observers participators in spacetime’s 

classicalization. This implies: 

QBism Integration: Subjectivity of Probabilities and Observer Entanglement: 

Probabilities in quantum mechanics, particularly in the context of simplicial spacetime, are 

interpreted as subjective, reflecting the observer's degrees of belief or knowledge about the 

quantum state of the system, rather than objective properties of reality. This aligns with 

QBism (Quantum Bayesianism) interpretations of quantum mechanics, where probabilities 

are understood as subjective and observer-dependent, reflecting the observer's limited 

information and entanglement with the simplicial network. The observer, through their 

interaction with the simplicial spacetime, becomes entangled with the quantum system, and 

probabilities reflect the observer's subjective perspective and limited knowledge of the 

entangled quantum state, highlighting the participatory role of the observer in shaping 

quantum reality. 

Key Achievements 

The framework achieves significant progress towards a predictive and testable theory of 

quantum spacetime by: 

Unification: Unifying quantum mechanics, gravity, and thermodynamics within a single, 

consistent framework, providing a unified description of fundamental physics.  

Predictivity: Offering testable predictions for quantum spacetime fluctuations, angle-

stabilized materials, photon dispersion, CMB anomalies, and gravitational wave 

memory, opening avenues for empirical validation and differentiation from existing 

theories.  

Consistency: Demonstrating mathematical rigor and theoretical consistency, addressing key 

challenges in quantum gravity, and providing a philosophically coherent picture of 

spacetime and reality.  
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Limitations & Further Research Directions 

Experimental Validation 

To further validate the theoretical predictions for black hole thermodynamics and 

information paradox resolution in the Simplex-Focused Framework, experimental validation 

through analog simulations of horizon qubit dynamics is proposed. Specifically, experiments 

utilizing optical lattices to simulate black hole horizons and qubit dynamics can provide 

valuable insights into the quantum behavior of black holes and test the theoretical predictions 

of the framework in a laboratory setting. Analog simulations using optical lattices offer a 

promising pathway for experimentally probing the quantum aspects of black hole horizons 

and for validating theoretical models of quantum gravity and black hole thermodynamics, 

providing a complementary approach to astrophysical observations and theoretical 

derivations. Future research should focus on designing and implementing such analog 

simulations to directly test the predictions of the Simplex-Focused Framework and to gain 

further insights into the quantum nature of black holes and spacetime horizons. 

Future research should focus on: 

Concrete Model Development: Developing detailed, quantitative simplex-based models 

within NCG and QIT, focusing on mathematical rigor and computational tractability. 

(Karazoupis, 2025) 

Empirical Validation: Actively seeking empirical validation for testable predictions, 

designing concrete experiments and observations to probe simplex-based quantum gravity 

signatures, and refining the framework based on empirical feedback. (Karazoupis, 2025) 

Integration and Collaboration: Fostering integration of NCG and QIT, promoting 

collaboration within the scientific community to accelerate progress and address the complex 

challenges of simplex-based quantum gravity. (Karazoupis, 2025) 
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