

BPU12 • International Congress of Balkan Physics Union • Bucharest, Romania

W and Z production and properties

Itana Bubanja on behalf of CMS Collaboration University of Montenegro & Université libre de Bruxelles

10/07/2025

Building Blocks of the Standard Model: Vector Boson Studies

- The LHC: A Vector Boson Powerhouse
- CMS Detector at the Center of the Action

A wide range of studies using CMS are focusing on these particles — with several new results ready to be shared.

• Bosons Offer Clean, Clear Signals

Very clean experimental signature with lepton ID eff. uncertainty <1% and momentum scale uncert. $\sim 0.1\%$

Why It Matters?

• Putting Theory to the Test

Probe for pQCD as well as npQCD in different regions

• Looking Inside the Proton

Important insights into the partonic structure of hadrons

• Measuring the Fundamentals

Used to determine key Standard Model parameters with great precision.

Tiny differences could matter - as measurement accuracy improves, even very small differences from predictions could signal something new.

• Background for other analyses

PDF

Measurement of W and Z boson cross sections at 5.02 and 13 TeV

2017 DATA • 298 ± 6 pb⁻¹ at 5.02 TeV & 201 ± 3 pb⁻¹ at 13 TeV • TOTAL INCLUSIVE AND FIDUCIAL CROSS SECTIONS • JHEP 04 (2025) 162

Low pile up

Event selection and background:

- Prompt, energetic and isolated lepton(s)
- Both electron and muon channels analysed
- EW and tt backgrounds from simulation
- For the W case, QCD multijets background from control region in data (invert m_T cut)

	$W^+ ightarrow e^+ u$	$W^- ightarrow e^- \overline{ u}$	$Z ightarrow e^+e^-$	$W^+ o \mu^+ u$	$W^- ightarrow \mu^- \overline{ u}$	$Z ightarrow \mu^+ \mu^-$
Observed	689131	561870	72040	1016318	796731	128889
Signal	591760 ± 770	467820 ± 680	71520 ± 270	923620 ± 960	708680 ± 840	128390 ± 360
EW	12150 ± 110	11450 ± 110	$159\pm~13$	38200 ± 200	33710 ± 180	$271\pm~16$
tī	$4768\pm\ 69$	$4780\pm\ 69$	$216\pm~15$	$6326\pm~80$	6345 ± 80	$360\pm~19$
QCD multijet	80750 ± 280	77980 ± 280		47910 ± 220	47930 ± 220	

Event yields, after the maximum likelihood fit, in the W^+ , W^- , and Z boson signal regions for electron and muon final states at 13 TeV.

Measurement of W and Z boson cross sections at 5.02 and 13 TeV

2017 DATA • 298 ± 6 pb⁻¹ at 5.02 TeV & 201 ± 3 pb⁻¹ at 13 TeV • TOTAL INCLUSIVE AND FIDUCIAL CROSS SECTIONS • JHEP 04 (2025) 162

Important for:

- Testing higher-order perturbative QCD
- Evaluating electroweak radiative corrections
- Constraining parton distribution functions (PDFs)

 Cross-section and cross-section ratios from fitting m_{ll} and m_T distributions from Z and W bosons

Theoretical predictions:

- NNLO and N3LO in QCD
- NLO in electroweak corrections

CMS			206 pb ⁻¹ (13 TeV)
Measured		★ NNPDF4.0 ✦MSHT20	Measured± unc Theory± unc (NNPDF3.1)
$W^+ \rightarrow I^+ \nu$			11800± 10 _{stat} ± 100 _{syst} ± 270 _{lumi} pb 11540 ⁺¹⁰⁰ _130 pb
$W \to \bar{\Gamma} \overline{\nabla}$	۲ لیے		8670± 10 _{stat} ± 80 _{syst} ± 200 _{lumi} pb 8526 ⁺⁶⁹ ₋₉₇ pb
$W \rightarrow h v$	ے ج <u>ا</u>	5 -	20480± 10 _{stat} ± 170 _{syst} ± 470 _{lumi} pb 20070 ⁺¹⁷⁰ ₋₂₃₀ pb
$Z \rightarrow l^+ \bar{l}$	–		1952± 4 _{stat} ± 18 _{syst} ± 45 _{lumi} pb 1940 ⁺¹⁵ ₋₂₁ pb
$W^+ \rightarrow I^+ v / W^- \rightarrow$	↓ [v		$\frac{1.3615 \pm 0.0018_{stat} \pm 0.0094_{syst}}{1.3536^{+0.0050}_{-0.0044}}$
$W \rightarrow hv / Z \rightarrow l^+$, , ,		$10.491 \pm 0.024_{stat} \pm 0.083_{syst}$ $10.341^{+0.043}_{-0.040}$
0.9		1 Theory /	1.1 $^{\prime}$ Measured Ratio of $\sigma_{\rm 13TeV}^{tot}$

- Luminosity unc. at 5.02 TeV (13 TeV) 1.9% (2.3%), other experimental unc. ~0.3%
- Luminosity and other systematic unc. cancel out for the ratios improved agreement with theory
- Good agreement with NNLO predictions

Measurement of W and Z boson cross sections at 5.02 and 13 TeV

2017 DATA • 298 ± 6 pb⁻¹ at 5.02 TeV & 201 ± 3 pb⁻¹ at 13 TeV • TOTAL INCLUSIVE AND FIDUCIAL CROSS SECTIONS • JHEP 04 (2025) 162

Summary of the measurements of the total W^+ , W^- , W, and Z production cross sections times branching fractions versus center-of-mass energy for CMS and experiments at lower-energy colliders.

5

Measurement of the W and Z production cross section at 13.6 TeV

2022 DATA

5.04 fb⁻¹

TOTAL INCLUSIVE AND FIDUCIAL CROSS SECTIONS **CMS PAS SMP-22-017**

Uncertainty source

Muon efficiency Finite size of MC samples QCD background PDF, scales, and parton sh Muon momentum correct Recoil correction EWK background normali Z boson $p_{\rm T}$ correction tt background normalizat Pileup Total Integrated luminosity Statistical uncertainty

- Muon decay modes considered
- Maximum likelihood fit to m_{II} and m_{T}
- dominating
- Good agreement with theory predictions

	Uncertainty in $\sigma_{fid} \mathcal{B}$ (in %) for			
	W^+	W^-	W^{\pm}	Ζ
	0.28	0.29	0.29	0.40
(bin-by-bin)	0.27	0.27	0.25	0.08
	0.53	0.49	0.49	0.07
nower	0.25	0.25	0.25	0.06
ion	0.01	0.02	0.01	0.03
	0.09	0.08	0.08	0.02
ization	0.05	0.05	0.05	0.02
	0.03	0.04	0.03	0.01
tion	0.01	0.03	0.02	0.01
	0.01	0.02	< 0.01	< 0.01
	0.68	0.66	0.65	0.42
	1.4	1.4	1.4	1.4
	0.03	0.03	0.02	0.06

• Luminosity unc. 1.4%, among other experimental unc. muon efficiency is

2016–2018 DATA	•	138 fb ⁻¹	

• Key parameter in the electroweak sector

$$\sin^2 heta^l_{eff} = k_f \left(1-rac{m_W^2}{m_Z^2}
ight)$$

- Connects the masses of electroweak bosons and determines the strength of the electroweak interaction
- The effective mixing angles for different fermions can be precisely computed in the SM • any significant deviation can be seen as evidence for new physics
- Currently, the most precise measurements from LEP and SLD differ in central values by 3.2 standard deviations
- This measurement exceeds the sensitivity of all previous hadron collider measurement and achieves equivalent precision to the LEP and SLD measurements.
- Drell–Yan dimuon and dielectron events
 - Electrons divided according to eta
- Asymmetry in lepton decay angle distribution

$$\sim 1 + \cos^2 \theta + 0.5 A_0 (1 - 3\cos^2 \theta) + A_4 \cos \theta$$
$$\Rightarrow A_{FB} = \frac{3}{8} A_4$$

- Collins-Soper frame in order to reduce theoretical and experimental uncertainties
- Definition of positive z relies on sign of pair rapidity
 - Significant y-dependent dilution & pdf errors

Phys. Lett. B 866 (2025) 139526

Anti-quark

2016-2018 DATA

138 fb⁻¹

Phys. Lett. B 866 (2025) 139526

Good data/MC agreement across the phase space

- Baseline model: POWHEG MiNNLO + Pythia8 + PHOTOS
- Extract of the effective leptonic weak mixing angle from template fits of A_{FB} depending on mass and rapidity
- Dependence on rapidity -> valence quarks are important
 - A_{FB} measurement is sensitive to the PDF

Phys. Lett. B 866 (2025) 139526

 $\sin^2 \theta_{\text{eff}}^{\ell} = 23157 \pm 10 \text{ (stat.)} \pm 15 \text{ (syst.)} \pm 9 \text{ (theo.)} \pm 27 \text{ (PDF)} \times 10^{-5}$

Phys. Lett. B 866 (2025) 139526

High-precision measurement of the W boson mass

2016 DATA

16.8 pb⁻¹

- Goal: Precision measurement of the W boson mass (m_w)
 - Hadronic channel: Not feasible due to huge QCD backgrounds
 - Focus on leptonic channel: Full W reconstruction not possible because of the undetected neutrino but can be inferred from the missing transverse momentum
 - Muon channel only:
 - Less affected by systematics than electrons
 - $\,\circ\,$ Traditionally, m_{T} is the preferred variable for the m_{W} measurement
 - More robust wrt theoretical calculations, but resolution limited at high pileup environments
 - $\,\circ\,$ Muon p_T is more precisely measured than m_T
 - Sensitive to theoretical uncertainties (PDFs and W p_T)

• Fit Strategy:

- $\circ~$ 3D fit using muon $p_t,\,\eta,$ and charge
- \circ ~2,880 bins in total
 - ~5,000 systematic variations evaluated
- $\circ~$ ~4 billion simulated events
- $\circ~$ ~100 million selected data events $\rightarrow~$ largest ever
 - dataset for mW

High-precision measurement of the W boson mass

2016 DATA

16.8 pb⁻¹

- Considered seven modern sets of PDFs
- Performed bias test on m_w
- Impact on m_w ~4.4 MeV

PDF sot	Scale factor	Impact on m_W (MeV)		
I DI'SEL	Scale lactor	Original σ_{PDF}	Scaled $\sigma_{\rm PDF}$	
CT18Z		4.4	4	
CT18		4.6		
PDF4LHC21		4.1	1	
MSHT20	1.5	4.3	5.1	
MSHT20aN3LO	1.5	4.2	4.9	
NNPDF3.1	3.0	3.2	5.3	
NNPDF4.0	5.0	2.4	6.0	

SMP-23-002

• Taking one PDF as prediction and the other as pseudo data • Determine inflation factors needed to cover the other PDF set • CT18Z used as nominal PDF, cover other sets within its original uncertainty

High-precision measurement of the W boson mass

2016 DATA

16.8 pb⁻¹

SMP-23-002

- First W mass measurement by CMS
- Most precise at the LHC

- Precision comparable to CDF
- Excellent agreement with Standard Model prediction
- Tension with CDF result
- Acts as a benchmark for future electroweak precision measurements

Summary

- Overview of recent precision measurements involving W and Z bosons
- Results obtained with CMS detector
- Results shown for several center of mass energies
- Comparison with several theory predictions
- Aim for better understanding of the QCD
- Precision today, discovery tomorrow!

14